【題目】已知函數(shù)f(x)=lnx+2sinα(α∈(0,))的導(dǎo)函數(shù)f′(x),若存在x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍為( 。
A.(
B.(0,
C.( ,
D.(0,

【答案】C
【解析】∵f′(x)= , f′(x0)= , f′(x0)=f(x0),
=ln x0+2sinα,
∴sinα=ln x0 ,
又∵0<x0<1,
∴可得 ﹣ln x0)> , 即sin α> ,
∴α∈( ,
故選:C.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,M、N是焦點(diǎn)為F的拋物線y2=2px(p>0)上兩個(gè)不同的點(diǎn),且線段MN中點(diǎn)A的橫坐標(biāo)為4- ,
(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點(diǎn)B點(diǎn),求點(diǎn)B橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是半圓O的直徑,O是半圓圓心,AB=8,M、N、P是將半圓圓周四等分的三個(gè)分點(diǎn).
(1)從A、B、M、N、P這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成等腰三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn)S,求△SOB的面積大于4 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,點(diǎn)E是C1D1的中點(diǎn).
(1)求證:DE⊥平面BCE;
(2)求二面角A﹣EB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中, 分別是、的中點(diǎn).

(1)求證:四邊形是菱形;

(2)求異面直線所成角的大小 (結(jié)果用反三角函數(shù)值表示) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形,

(1)證明: ;

(2)若點(diǎn)在平面內(nèi)的射影,求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,求分別滿足下列條件的a,b的值.
(1)直線l1過點(diǎn)(﹣3,﹣1),且l1⊥l2;
(2)l1∥l2 , 且坐標(biāo)原點(diǎn)到l1與l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是綿陽市某小區(qū)100戶居民2014年平均用水量(單位:t)的頻率分布直方圖,則該小區(qū)2014年的月平均用水量的眾數(shù),中位數(shù)的估計(jì)值分別是(

A.2,2.5
B.2,2.02
C.2.25,2.5
D.2.25,2.02

查看答案和解析>>

同步練習(xí)冊答案