命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

解析試題分析:先根據(jù)不等式恒成立問題以及二次函數(shù)的圖像與性質(zhì)求出為真時(shí)的的取值范圍,再根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)求出為真時(shí)的的取值范圍.根據(jù)已知條件“為真,為假”可知,,一真一假,那么分別求出“假”和“真”情況下的的取值范圍,兩種情況下的的取值范圍取并集即可.
試題解析:為真:,解得;               2分
為真:,解得.                        4分
為真,為假,∴,一真一假.           6分
當(dāng)假時(shí),   ;          8分
當(dāng)真時(shí),  .             10分
的取值范圍為.                        12分
考點(diǎn):1.命題的真假判斷及應(yīng)用;2.不等式恒成立問題;3.二次函數(shù)的圖像與性質(zhì);4.指數(shù)函數(shù)的圖像與性質(zhì);5.解不等式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若,是否存在,使為偶函數(shù),如果存在,請舉例并證明你的結(jié)論,如果不存在,請說明理由;
(2)若,,求上的單調(diào)區(qū)間;
(3)已知,,有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若且對任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù)

(1)求實(shí)數(shù)的值,并在給出的直角坐標(biāo)系中畫出的圖象;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實(shí)數(shù),函數(shù),
(1)當(dāng)時(shí),討論的奇偶性;
(2)當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)對任意滿足,,若當(dāng)時(shí),),且
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案