【題目】已知函數,,
(Ⅰ)當,時,求曲線在處的切線方程;
(Ⅱ)當時,若對任意的,恒成立,求實數的取值范圍;
(Ⅲ)當,時,若方程有兩個不同的實數解,求證:.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)詳見解析
【解析】
(Ⅰ)求出的導函數,求出函數在時的導數得到切線的斜率,然后用一般式寫出切線的方程;
(Ⅱ)對,都成立,則對,,恒成立,構造函數,求出的最大值可得的范圍;
(Ⅲ)由,得,構造函數,將問題轉化為證明,然后構造函數證明即可.
解:(Ⅰ)當時,時,,∴當時,,
∴,∴當時.
∴曲線在處的切線方程為;
(Ⅱ)當時,對,都成立,則對,恒成立,
令,則.令,則,
∴當,,此時單調遞增;當時,,此時單調遞減,
∴,∴,
∴的取值范圍為;
(Ⅲ)當,時,由,得,
方程有兩個不同的實數解.
令.則..令.則,
∴當時..此時單調遞增;當時..此時單調遞減,
∴,∴,又,,
∴,∴,
∴只要證明,就能得到.即只要證明,
令,則,
∴在上單調減,則,
∴,∴,
∴,∴,即,證畢.
科目:高中數學 來源: 題型:
【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學小組為了解腸胃病與運動之間的聯系,調查了50位中老年人每周運動的總時長(單位:小時),將數據分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進行統(tǒng)計,并繪制出如圖所示的柱形圖.
圖中縱軸的數字表示對應區(qū)間的人數現規(guī)定:每周運動的總時長少于14小時為運動較少.
每周運動的總時長不少于14小時為運動較多.
(1)根據題意,完成下面的2×2列聯表:
有腸胃病 | 無腸胃病 | 總計 | |
運動較多 | |||
運動較少 | |||
總計 |
(2)能否有99.9%的把握認為中老年人是否有腸胃病與運動有關?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線, (為參數, 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.
(Ⅰ)將曲線的直角坐標方程化為極坐標方程;
(Ⅱ)設點的直角坐標為,直線與曲線的交點為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標方程;(Ⅱ)將的參數方程代入,得,根據直線參數方程的幾何意義,利用韋達定理結合輔助角公式,由三角函數的有界性可得結果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標方程為
(II)將的參數方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結束】
23
【題目】已知、、均為正實數.
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點,,動點與兩點連線的斜率滿足.
(1)求動點的軌跡的方程;
(2)是曲線與軸正半軸的交點,曲線上是否存在兩點,使得是以為直角頂點的等腰直角三角形?若存在,請說明有幾個;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓C:上的一點,橢圓C的離心率與雙曲線的離心率互為倒數,斜率為直線l交橢圓C于B,D兩點,且A、B、D三點互不重合.
(1)求橢圓C的方程;
(2)若分別為直線AB,AD的斜率,求證:為定值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | ||||||
頻數 | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
(1)將頻率視為概率. 若乙套設備生產了5000件產品,則其中的不合格品約有多少件;
(2)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業(yè)生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
0.15 | 0.10 | 0.050 | |
2.072 | 2.706 | 3.841 |
附:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com