定義域為R,且對任意實數(shù)都滿足不等式的所有函數(shù)組成的集合記為M,例如,函數(shù)
(1)已知函數(shù),證明:
(2)寫出一個函數(shù),使得,并說明理由;
(3)寫出一個函數(shù),使得數(shù)列極限


(1)證明略
(2)理由略
(3)略

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù), 其中為常數(shù),且函數(shù)圖像過原點.
(1)      求的值;
(2)      證明函數(shù)在[0,2]上是單調遞增函數(shù);
(3)      已知函數(shù), 求函數(shù)的零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù) (∈R).
(Ⅰ)試給出的一個值,并畫出此時函數(shù)的圖象;
(Ⅱ)若函數(shù) f (x) 在上具有單調性,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分分)
已知函數(shù).(為常數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當時,上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù)
(1)求函數(shù)的單調區(qū)間、極值;
(2)若當時,恒有,試確定的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
某旅游景區(qū)的觀景臺P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現(xiàn)從山腳的水平公路AB某處C0開始修建一條盤山公路,該公路的第一段、第二段、第三段…,第n-1段依次為C0C1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且C0C1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=.試問:

(1)每修建盤山公路多少米,垂直高度就能升高100米.若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?
(2)若修建xkm盤山公路,其造價為 a萬元.修建索道的造價為2a萬元/km.問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(1)將利潤元表示為月產(chǎn)量臺的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?(總收益=總成本+利潤)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù)
(1)當時,求曲線處的切線方程;
(2)設的兩個極值點,的一個零點,且證明:存在實數(shù)按照某種順序排列后構成等差數(shù)列,并求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設二次函數(shù),對任意實數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)試寫出一個區(qū)間,使得當時,數(shù)列在這個區(qū)間上是遞增數(shù)列,并說明理由;
(3)已知,是否存在非零整數(shù),使得對任意,都有
 恒成立,若存在,
求之;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案