(理)如圖,P—ABCD是正四棱錐,是正方體,其中
(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;
(1)以為軸,為軸,為軸建立空間直角坐標(biāo)系, ∴ ∴∴
∴ , 即(2)
解析試題分析:以為軸,為軸,為軸建立空間直角坐標(biāo)系
(1)證明:設(shè)E是BD的中點(diǎn),P—ABCD是正四棱錐,
∴
又, ∴ ∴
∴
∴ , 即.
(2)解:設(shè)平面PAD的法向量是,
∴ 取得,
又平面的法向量是
∴ , ∴.
考點(diǎn):直線垂直的判定及二面角的求解
點(diǎn)評(píng):要證兩直線垂直只需證明兩直線的方向向量數(shù)量積為0,求二面角時(shí)首先找到兩個(gè)半平面對(duì)應(yīng)的法向量,求出法向量夾角,進(jìn)而轉(zhuǎn)化為平面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD為正方形,為等腰直角三角形,,且.
(1)證明:平面平面.
(2)求直線EC與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,PD⊥底面ABCD,PD="AD."
(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)若E、F分別為PB,AD的中點(diǎn),求證:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點(diǎn).
(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為的等邊△所在的平面垂直于矩形所在的平面, ,為的中點(diǎn).
(1)證明:;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形中,,,平面,,,為的中點(diǎn).
(1)求證:平面.
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題満分12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點(diǎn).
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,并求出N點(diǎn)到AB和AP的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com