如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點.
(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.
(1)通過余弦定理來證明AC⊥A1C,以及結(jié)合題目中的BC⊥A1C來得到證明。
(2)
解析試題分析:解:(1)證明:∵BC⊥側(cè)面AA1C1C,A1C在面AA1C1C內(nèi),∴BC⊥A1C. 2分
在△AA1C中,AC=1,AA1=C1C=2,∠CAA1=,
由余弦定理得A1C2=AC2+-2AC•AA1cos∠CAA1=12+22-2×1×2×cos=3,
∴A1C= ∴AC2+A1C2=AA12 ∴AC⊥A1C 5分
∴A1C⊥平面ABC. 6分
(2)由(Ⅰ)知,CA,CA1,CB兩兩垂直
∴如圖,以C為空間坐標系的原點,分別以CA,CA1,CB所在直線為x,y,z軸建立空間直角坐標系,則C(0,0,0),B(0,0,1),A(1,0,0),A1(0,,0)
由此可得D(,,0),E(0,,0),=(,,-1),=(0,,-1).
設(shè)平面BDE的法向量為=(x,y,z),則有令z=1,則x=0,y=
∴=(0,,1) 9分
∵A1C⊥平面ABC ∴=(0,,0)是平面ABC的一個法向量 10分
∴
∴平面BDE與ABC所成銳二面角的余弦值為. 12分
考點:二面角的平面角以及線面垂直
點評:主要是考查了空間中線面位置關(guān)系,以及二面角的平面角的求解的綜合運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點,△DAB≌△DCB,EA=EB=AB=1,PA=,連接CE并延長交AD于F.
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
斜三棱柱,其中向量,三個向量之間的夾角均為,點分別在上且,=4,如圖
(Ⅰ)把向量用向量表示出來,并求;
(Ⅱ)把向量用表示;
(Ⅲ)求與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在邊長是2的正方體-中,分別為
的中點. 應(yīng)用空間向量方法求解下列問題.
(1)求EF的長
(2)證明:平面;
(3)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知:四棱錐P—ABCD的底面為直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,側(cè)面PAD與底面垂直,PA=PD,點M為側(cè)棱PC上一點.
(1)若PA=AD,求PB與平面PAD的所成角大小;
(2)問多大時,AM⊥平面PDB可能成立?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖:在空間四邊形ABCD中,AB,BC,BD兩兩垂直,且AB=BC=2,E是AC的中點,異面直線AD和BE所成的角為,求BD的長度.(15分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com