如圖,邊長(zhǎng)為的等邊△所在的平面垂直于矩形所在的平面, ,為的中點(diǎn).
(1)證明:;
(2)求二面角的大小.
(1)能利用已知建立空間直角坐標(biāo)系,然后表示出點(diǎn)的坐標(biāo),進(jìn)而證明即可。
(2)
解析試題分析:證明:(1) 以點(diǎn)為原點(diǎn),分別以直線為軸,軸,建立如圖所示的空間直角坐標(biāo)系,依題意,
可得 ,
∴, ,
∴即,
∴.-----------6分
(2)設(shè),且平面,則,
即,
∴,即,
取,得,
取,顯然平面ABCD,
∴,
結(jié)合圖形可知,二面角為. 12分
考點(diǎn):二面角,垂直的證明
點(diǎn)評(píng):主要是考查了空間中的垂直的證明,以及二面角的平面角的求解運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐中,底面為菱形,平面,,分別是的中點(diǎn).
(1)證明:平面;
(2)取,若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在底面邊長(zhǎng)為2,高為1的正四梭柱ABCD=A1B1C1D1中,E,F(xiàn)分別為BC,C1D1的中點(diǎn).
(1)求異面直線A1E,CF所成的角;
(2)求平面A1EF與平面ADD1A1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知長(zhǎng)方形中,,為的中點(diǎn). 將沿折起,使得平面平面.
(I)求證: ;
(II)若點(diǎn)是線段的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(理)如圖,P—ABCD是正四棱錐,是正方體,其中
(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖, 在直角梯形中,
∥
點(diǎn)分別是的中點(diǎn),現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com