【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1,),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
【答案】(1);(2)存在,.
【解析】試題分析(1)先設(shè)橢圓的標(biāo)準(zhǔn)方程,將點(diǎn)代入得到一個(gè)方程,根據(jù)離心率得到一個(gè)關(guān)系式,再由可得到的值,進(jìn)而得到橢圓的方程.(2)假設(shè)存在直線滿足條件,設(shè)直線方程為,然后與橢圓方程聯(lián)立消去得到一元二次方程,且方程一定有兩根,故應(yīng)大于得到的范圍,進(jìn)而可得到兩根之和、兩根之積的表達(dá)式,再表示出,再代入關(guān)系式可確定的值,從而得解.
試題解析:(1)設(shè)橢圓C的方程為,
由題意得解得.故橢圓C的方程為.
(2)若存在直線l滿足條件,由題意可設(shè)直線l的方程為,由
得.
因?yàn)橹本l與橢圓C相交于不同的兩點(diǎn)A,B,
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,
所以
整理得,解得.
又,,且
即,
所以,
即.
所以,
解得.
所以k=.于是存在直線l滿足條件,
其方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點(diǎn)在大眾中的熟知度,從年齡在15~65歲的人群中隨機(jī)抽取n人進(jìn)行問卷調(diào)查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:
調(diào)查問題是“雙峰山國(guó)家森林公園是幾A級(jí)旅游景點(diǎn)?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計(jì)結(jié)果如下表.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | y | 0.9 |
第4組 | [45,55) | 9 | a |
第5組 | [55,65] | 7 | b |
(1)分別求出n,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓C:的左右焦點(diǎn)分別為,,直線l:與橢圓C交于A,B兩點(diǎn)為坐標(biāo)原點(diǎn).
若直線l過點(diǎn),且十,求直線l的方程;
若以AB為直徑的圓過點(diǎn)O,點(diǎn)P是線段AB上的點(diǎn),滿足,求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對(duì)冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計(jì)算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,橢圓的長(zhǎng)軸長(zhǎng)為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對(duì)角線交于原點(diǎn),且,求四邊形ABCD周長(zhǎng)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水利部門擬在黃河沿岸修建一所水庫,為大致了解甲、乙兩地的降水情況,隨機(jī)選取汛期月份中的一周,將這一周內(nèi)每日的降水量數(shù)據(jù)進(jìn)行統(tǒng)計(jì)(單位:),制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地本周的平均降水量低于乙地本周的平均降水量;
②甲地本周的中位降水量高于乙地本周的平均降水量;
③甲地本周的降水量眾數(shù)大于乙地本周的降水量的中位數(shù);
④甲地本周降水量的標(biāo)準(zhǔn)差大于乙地本周降水量的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的不恰當(dāng)?shù)慕y(tǒng)計(jì)結(jié)論的編號(hào)為( )
A.①③B.②④C.①④D.②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com