【題目】根據(jù)函數(shù)f(x)=log2x的圖象和性質(zhì)解決以下問題:
(1)若f(a)>f(2),求a的取值范圍;
(2)y=log2(2x-1)在[2,14]上的最值.
【答案】(1) (2,+∞) (2) 最小值為log23,最大值為log227
【解析】試題分析:(1)由函數(shù)的單調(diào)性及,即可求出的取值范圍;(2)根據(jù)定義域為,表示出的取值范圍,結(jié)合對數(shù)函數(shù)的性質(zhì),即可求得最值.
試題解析:函數(shù)f(x)=log2x的圖象如圖:
(1)因為f(x)=log2x是增函數(shù),故f(a)>f(2),即log2a>log22,則a>2.
所以a的取值范圍為(2,+∞).
(2)∵2≤x≤14,∴3≤2x-1≤27,
∴log23≤log2(2x-1)≤log227.
∴函數(shù)y=log2(2x-1)在[2,14]上的最小值為log23,最大值為log227.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的不等式|x﹣a|<b的解集為{x|2<x<4}.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設實數(shù)x,y,z 滿足 + + =1,求x,y,z的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)試比較f(f(-3))與f(f(3))的大;
(2)畫出函數(shù)的圖象;
(3)若f(x)=1,求x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)設數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式 對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a1+a2=10,a5=a3+4.
(1)求{an}的通項公式;
(2)記{an}的前n項和為Sn若Sk+1<2ak+a2,求正整數(shù)k的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2014年5月12日,國家統(tǒng)計局公布了《2013年農(nóng)民工監(jiān)測調(diào)查報告》,報告顯示:我國農(nóng)
民工收入持續(xù)快速增長.某地區(qū)農(nóng)民工人均月收入增長率如圖1,并將人均月收入繪制成如
圖2的不完整的條形統(tǒng)計圖.
圖1 圖2
根據(jù)以上統(tǒng)計圖來判斷以下說法錯誤的是
A. 2013年農(nóng)民工人均月收入的增長率是
B. 2011年農(nóng)民工人均月收入是元
C. 小明看了統(tǒng)計圖后說:“農(nóng)民工2012年的人均月收入比2011年的少了”
D. 2009年到2013年這五年中2013年農(nóng)民工人均月收入最高
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com