【題目】如圖,正方形與正方形所成角的二面角的平面角的大小是是正方形所在平面內(nèi)的一條動(dòng)直線,則直線所成角的取值范圍是(

A.B.C.D.

【答案】D

【解析】

由題意可知,設(shè)點(diǎn)在平面內(nèi)的投影為點(diǎn),則易得點(diǎn)在線段上,可得.由最小角定理得當(dāng)直線與直線重合時(shí),直線與直線所成的角取得最小值,當(dāng)直線與直線垂直時(shí),,此時(shí)直線與直線所成的角取得最大值,由此即可求出結(jié)果.

因?yàn)檎叫?/span>與正方形所成二面角的平面角的大小是,所以.

設(shè)點(diǎn)在平面內(nèi)的投影為點(diǎn),則易得點(diǎn)在線段上,且,又因?yàn)?/span>,所以.

由最小角定理得當(dāng)直線與直線重合時(shí),直線與直線所成的角取得最小值,當(dāng)直線與直線垂直時(shí),,

此時(shí)直線與直線所成的角取得最大值,所以直線與直線所成角的取值范圍為.

故選:D.

【點(diǎn)精】

本題考查二面角、異面直線的夾角,注意兩條異面直線所成角的取值范圍為,本題屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若.證明函數(shù)有且僅有兩個(gè)零點(diǎn);

2)若函數(shù)存在兩個(gè)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線兩點(diǎn).

1)當(dāng)時(shí),求直線的方程;

2)若過(guò)點(diǎn)且垂直于直線的直線與拋物線交于、兩點(diǎn),記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體中,若分別是棱的中點(diǎn),則必有( )

A.

B.

C. 平面平面

D. 平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品自生產(chǎn)并投入市場(chǎng)以來(lái),生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)產(chǎn)品進(jìn)行質(zhì)量檢測(cè),并依據(jù)質(zhì)量指標(biāo)Z來(lái)衡量產(chǎn)品的質(zhì)量.當(dāng)時(shí),產(chǎn)品為優(yōu)等品;當(dāng)時(shí),產(chǎn)品為一等品;當(dāng)時(shí),產(chǎn)品為二等品.第三方檢測(cè)機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計(jì)該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計(jì)概率.

1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取4件,求至少有1件優(yōu)等品的概率;

2)現(xiàn)某人決定購(gòu)買80件該產(chǎn)品.已知每件成本1000元,購(gòu)買前,邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)要購(gòu)買的80件產(chǎn)品進(jìn)行抽樣檢測(cè),買家、企業(yè)及第三方檢測(cè)機(jī)構(gòu)就檢測(cè)方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測(cè),若檢測(cè)出3件或4件為優(yōu)等品,則按每件1600元購(gòu)買,否則按每件1500元購(gòu)買,每件產(chǎn)品的檢測(cè)費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為X元,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為的中點(diǎn),下列說(shuō)法中正確的是(

A.所成的角大于

B.點(diǎn)到平面的距離為1

C.三棱錐的外接球的表面積為

D.直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線l與曲線C相交于MN兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù)的敘述正確的為( )

A.函數(shù)有三個(gè)零點(diǎn)

B.點(diǎn)(1,0)是函數(shù)圖象的對(duì)稱中心

C.函數(shù)的極大值點(diǎn)為

D.存在實(shí)數(shù)a,使得函數(shù)為增函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案