【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( )
A. 5032 B. 5044 C. 5048 D. 5050
【答案】B
【解析】分析:a1a2+a2a3+…+anan+1=na1an+1,①;a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②;①﹣②,得﹣an+1an+2=na1an+1﹣(n+1)a1an+2,,同理,得整理,得, 是等差數(shù)列,由此能求出.
詳解:a1a2+a2a3+…+anan+1=na1an+1,①
a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②
①﹣②,得﹣an+1an+2=na1an+1﹣(n+1)a1an+2,
∴
同理,得,
∴
整理,得,
∴是等差數(shù)列.
∵a1=,a2=,
∴等差數(shù)列的首項(xiàng)是4,公差1,
∴=5044.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡(jiǎn)稱(chēng))全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(jī)(單位:分鐘)分別為數(shù)據(jù) (成績(jī)不為0).
(Ⅰ)24名男選手成績(jī)的莖葉圖如圖⑴所示,若將男選手成績(jī)由好到差編為1~24號(hào),再用系統(tǒng)抽樣方法從中抽取6人,求其中成績(jī)?cè)趨^(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來(lái)對(duì)這50名選手的成績(jī)進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請(qǐng)完成圖⑵中空白的判斷框①處的填寫(xiě),并說(shuō)明輸出數(shù)值和的統(tǒng)計(jì)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,所得的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,經(jīng)過(guò)原點(diǎn)的兩直線滿足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐S﹣ABC的各頂點(diǎn)都在一個(gè)半徑為r的球面上,且SA=SB=SC=1,AB=BC=AC=,則球的表面積為( 。
A. 12π B. 8π C. 4π D. 3π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)設(shè),問(wèn)是否存在極值,若存在,請(qǐng)求出極值,若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)是函數(shù)圖象上任意不同的兩點(diǎn),線段的中點(diǎn)為,直線的斜率為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且為偶函數(shù),對(duì)于函數(shù)有下列幾種描述:
①是周期函數(shù); ②是它的一條對(duì)稱(chēng)軸;
③是它圖象的一個(gè)對(duì)稱(chēng)中心; ④當(dāng)時(shí),它一定取最大值;
其中描述正確的是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com