【題目】設(shè)函數(shù),已知在處的切線相同.
(1)求的值及切線的方程;
(2)設(shè)函數(shù),若存在實數(shù)使得關(guān)于的不等式對上的任意實數(shù)恒成立,求的最小值及對應(yīng)的的解析式.
【答案】(1),(2)的最小值為2,
【解析】
試題分析:(1)由導(dǎo)數(shù)幾何意義得,又切點相同,所以,從而可列方程組且,解得,,再根據(jù)點斜式得切線方程:(2)由題意可得為函數(shù)的一條公切線,先求公切線,易得:,解得公切線為,再證恒成立
試題解析:解:(1),
由已知且,
∴且,得,
又,∴,
∴,
∴切線的方程為, 即
(2)由(1)知,,又因為,
可知,
①由對恒成立,
即對恒成立,
所以,解得①
②由對恒成立,即設(shè),
則,令,得,
當(dāng)時,單調(diào)遞增;
當(dāng)時,單調(diào)遞減,
故,
則,故得,②
由①②得,③
由存在實數(shù)使得③成立的充要條件 是:不等式,有解,該不等式可化為有解
令,則有,設(shè),
,
可知在上遞增,在上遞減,
又,所以在區(qū)間內(nèi)存在一個零點,故不等式的解為即,得,
因此的最小值為2,代入③中得,故,此時對應(yīng)的的解析式為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l、m 、n 與平面α、β給出下列四個命題:
①若m∥l,n∥l,則m∥n; ②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;④若m⊥β,α⊥β,則m∥α
其中,假命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,延長CD至E,使得DE=CD.若動點P從點A出發(fā),沿正方形的邊按逆時針方向運動一周回到A點,其下列敘述正確的是( )
A. 滿足λ+μ=2的點P必為BC的中點
B. 滿足λ+μ=1的點P有且只有一個
C. λ+μ的最大值為3
D. λ+μ的最小值不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分別求滿足下列條件的a,b值
(1)l1⊥l2,且直線l1過點(﹣3,﹣1);
(2)l1∥l2,且直線l1在兩坐標(biāo)軸上的截距相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,點在平面內(nèi)的射影在棱上,,底面是梯形,,且.
(1)求證:平面平面;
(2)若直線與所成角為60°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形中,為的中點,將 沿折起,使得平面平面.
(1)求證:;
(2)若點是線段上的一動點,問點在何位置時,三棱錐的體積與四棱錐的體積之比為1:3?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題中:
①函數(shù)的一個對稱中心為;
②若, 為第一象限角,且,則;
③若,則存在實數(shù),使得;
④點是三角形所在平面內(nèi)一點,且滿足,則點是三角形的內(nèi)心.
其中正確的序號是__________.(把你認(rèn)為正確的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足: .
(1)求;
(2)設(shè),求數(shù)列的通項公式;
(3)設(shè),不等式恒成立時,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com