【題目】已知數(shù)列滿足,且.

(Ⅰ)求,的值;

(Ⅱ)是否存在實數(shù),,使得,對任意正整數(shù)恒成立?若存在,求出實數(shù)、的值并證明你的結論;若不存在,請說明理由.

【答案】(Ⅰ),;(Ⅱ)存在實數(shù),符合題意.

【解析】

(Ⅰ)由題意可整理為,從而代入,即可求,的值;

(Ⅱ)當時和時,可得到一組、的值,于是假設該式成立,用數(shù)學歸納法證明即可.

)因為,整理得,

,代入得,.

(Ⅱ)假設存在實數(shù)、,使得對任意正整數(shù)恒成立.

時,,

時,,

①②解得:,.

下面用數(shù)學歸納法證明:

存在實數(shù),,使對任意正整數(shù)恒成立.

1)當時,結論顯然成立.

2)當時,假設存在,使得成立,

那么,當時,

.

即當時,存在,,使得成立.

由(1)(2)得:

存在實數(shù),,使對任意正整數(shù)恒成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】三角形的三個頂點的坐標分別為,,,則該三角形的重心(三邊中線交點)的坐標為.類比這個結論,連接四面體的一個頂點及其對面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點,該點稱為四面體的重心.若四面體的四個頂點的空間坐標分別為,,,,則該四面體的重心的坐標為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設奇函數(shù)f (x )的定義域為R , , xf (x)=, f (x )在區(qū)間上的表達式為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣.由此催生了一批外賣點餐平臺,已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取80名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如下表:

以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

(1)從這80名點外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;

(2)試估計利用該平臺點外賣用戶的平均送餐距離;

(3)若該外賣平臺給送餐員的送餐贄用與送餐距離有關,規(guī)定2千米內為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠距離,每份9元,若送餐員一天的目標收 人不低于150元,試估計一天至少要送多少份外賣?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有(

A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在矩形中,,,點是線段上靠近點的一個三等分點,點是線段上的一個動點,且.如圖,將沿折起至,使得平面平面.

(1)當時,求證:;

(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設由橢圓 所圍成的平面圖形繞 軸旋轉一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京是我國嚴重缺水的城市之一.為了倡導節(jié)約用水,從我做起,小明在他所在學校的2000名同學中,隨機調查了40名同學家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:,,,,加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)給出圖中實數(shù)a的值;

(2)根據樣本數(shù)據,估計小明所在學校2000名同學家庭中,月均用水量低于8噸的約有多少戶;

(3)在月均用水量大于或等于10噸的樣本數(shù)據中,小明決定隨機抽取2名同學家庭進行訪談,求這2名同學中恰有1人所在家庭的月均用水量屬于組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電動車售后服務調研小組從汽車市場上隨機抽取20輛純電動汽車調查其續(xù)駛里程(單次充電后能行駛的最大里程),被調查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組:,繪制成如圖所示的頻率分布直方圖.

1)求續(xù)駛里程在的車輛數(shù);

2)求續(xù)駛里程的平均數(shù);

3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內的概率.

查看答案和解析>>

同步練習冊答案