【題目】已知數(shù)列與的前項(xiàng)和分別為與,對任意,.
(1)若,求;
(2)若對任意,都有.
①當(dāng)時(shí),求數(shù)列的前項(xiàng)和;
②是否存在兩個(gè)整數(shù),使成等差數(shù)列?若存在,求出的值,若不存在,請說明理由.
【答案】(1);(2)①;②不存在正整數(shù),理由見解析
【解析】
(1)根據(jù)和,可得數(shù)列的通項(xiàng)公式,代入,可得數(shù)列的通項(xiàng)公式,計(jì)算即得;(2)①根據(jù)可得,即得數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法計(jì)算即得;②根據(jù)已知可得的通項(xiàng)公式,計(jì)算即得,假設(shè)整數(shù)存在,使成等差數(shù)列,表示出,再結(jié)合函數(shù)單調(diào)性即可判斷出結(jié)論.
(1),,即,
故,數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列,
.
(2)①依題意,即,,
又因?yàn)?/span>,所以,所以,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,所以,
,
,錯(cuò)位相減得:,
所以.
②,且對任意,都有,,即,,可得為等比數(shù)列,
,,則有,得,,
所以,
假設(shè)存在兩個(gè)整數(shù),使成等差數(shù)列,
即成等差數(shù)列,即,
即 ,因?yàn)?/span>,所以,即,
令,則,所以遞增,
若,則,不滿足,所以,
代入得,
當(dāng)時(shí),顯然不符合要求;
當(dāng)時(shí),令,則同理可證遞增,所以,所以不符合要求.
所以,不存在正整數(shù),使成等差數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)與定點(diǎn)的距離與它到直線的距離的比是常數(shù),又斜率為的直線與曲線交于不同的兩點(diǎn)。
(Ⅰ)求曲線的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線與曲線的另一個(gè)交點(diǎn)為,直線與曲線的另一個(gè)交點(diǎn)為.若和點(diǎn) 共線,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中點(diǎn),
求證:(1)平面ABC;
(2)平面EDB.
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了紀(jì)念五四運(yùn)動100周年和建團(tuán)97周年,某校團(tuán)委開展“青春心向黨,建功新時(shí)代”知識問答競賽.在小組賽中,甲乙丙3人進(jìn)行擂臺賽,每局2人進(jìn)行比賽,另1人當(dāng)裁判,每一局的輸方擔(dān)任下局的裁判,由原來裁判向勝者挑戰(zhàn),甲乙丙3人實(shí)力相當(dāng).
(1)若第1局是由甲擔(dān)任裁判,求第4局仍是甲擔(dān)任裁判的概率;
(2)甲乙丙3人進(jìn)行的擂臺賽結(jié)束后,經(jīng)統(tǒng)計(jì),甲共參賽了6局,乙共參賽了5局而丙共擔(dān)任了2局裁判.則甲乙丙3人進(jìn)行的擂臺賽共進(jìn)行了多少局?若從小組賽中,甲乙丙比賽的所有場次中任取2場,則均是由甲擔(dān)任裁判的概率是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高老師需要用“五點(diǎn)法”畫函數(shù)在一個(gè)周期內(nèi)的圖像,此時(shí)的高老師已經(jīng)將部分?jǐn)?shù)據(jù)填入表格,如下表:
0 | a=? | 0 |
5 | ||
0 | ||
-5 | ||
b=? | 0 |
(1)請同學(xué)們幫助高老師寫出表格中的兩個(gè)未知量a和b的值,并根據(jù)表格所給信息寫出函數(shù)解析式(只需在答題卡的相應(yīng)位置填寫答案,無需寫出解析過程);
(2)將圖像上所有點(diǎn)向左平行移動個(gè)單位長度,得到圖像,求距離原點(diǎn)O最近的對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(Ⅰ)請將右面的列聯(lián)表補(bǔ)充完整;
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,且,.四邊形ABCD滿足,,.E為側(cè)棱PB的中點(diǎn),F為側(cè)棱PC上的任意一點(diǎn).
(1)若F為PC的中點(diǎn),求證:平面PAD;
(2)求證:平面平面PAB;
(3)是否存在點(diǎn)F,使得直線AF與平面PCD垂直?若存在,寫出證明過程并求出線段PF的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com