【題目】已知點(diǎn)A是圓C:x2+y2+ax+4y+10=0上任意一點(diǎn),點(diǎn)A關(guān)于直線x+2y-1=0的對(duì)稱點(diǎn)也在圓C上,則實(shí)數(shù)a的值為( )
A.10
B.-10
C.-4
D.4
【答案】B
【解析】通過(guò)配方可得圓C的標(biāo)準(zhǔn)方程為(x+ )2+(y+2)2= ,由題意,可知直線x+2y-1=0過(guò)圓心C(- ,-2),∴- -4-1=0,∴a=-10.又a=-10時(shí), >0,∴a的值為-10,
所以答案是:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程,以及對(duì)圓的一般方程的理解,了解圓的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒(méi)有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中, = +
(Ⅰ)求△ABM與△ABC的面積之比
(Ⅱ)若N為AB中點(diǎn), 與 交于點(diǎn)P且 =x +y (x,y∈R),求x+y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,其離心率 ,點(diǎn) 為橢圓上的一個(gè)動(dòng)點(diǎn),△ 面積的最大值為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若 是橢圓上不重合的四個(gè)點(diǎn), 與 相交于點(diǎn) , 求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組有9名學(xué)生.若從9名學(xué)生中選取3人,則選取的3人中恰好有一個(gè)女生的概率是 .
(1)該小組中男女學(xué)生各多少人?
(2)9個(gè)學(xué)生站成一列隊(duì),現(xiàn)要求女生保持相對(duì)順序不變(即女生 前后順序保持不變)重新站隊(duì),問(wèn)有多少種重新站隊(duì)的方法?(要求用數(shù)字作答)
(3)9名學(xué)生站成一列,要求男生必須兩兩站在一起,有多少種站隊(duì)的方法?(要求用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】太極圖是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分成兩部分的函數(shù)稱為圓煌一個(gè)“太極函數(shù)”下列有關(guān)說(shuō)法中:
①對(duì)圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y﹣1)2=1的一個(gè)太極函數(shù);
③存在圓O,使得f(x)= 是圓O的太極函數(shù);
④直線(m+1)x﹣(2m+1)y﹣1=0所對(duì)應(yīng)的函數(shù)一定是圓O:(x﹣2)2+(y﹣1)2=R2(R>0)的太極函數(shù).
所有正確說(shuō)法的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】底面為正方形的四棱錐S﹣ABCD,且SD⊥平面ABCD,SD= ,AB=1,線段SB上一M點(diǎn)滿足 = ,N為線段CD的中點(diǎn),P為四棱錐S﹣ABCD表面上一點(diǎn),且DM⊥PN,則點(diǎn)P形成的軌跡的長(zhǎng)度為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 : x2+y2+Dx+Ey+3=0 ,圓 關(guān)于直線 x+y-1=0對(duì)稱,圓心在第二象限,半徑為 .
(1)求圓 的方程;
(2)已知不過(guò)原點(diǎn)的直線 l 與圓 相切,且在 軸、 軸上的截距相等,求直線 l 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(1)=1,且對(duì)于任意的x∈R,都有f′(x)< ,則不等式f(log2x)> 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x4﹣2x3 , g(x)=﹣4x2+4x﹣2,x∈R.
(1)求f(x)的最小值;
(2)證明:f(x)>g(x).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com