【題目】如圖,在平面直角坐標(biāo)系xOy中,已知為橢圓的上頂點(diǎn),P為橢圓E上異于上、下頂點(diǎn)的一個(gè)動點(diǎn).當(dāng)點(diǎn)P的橫坐標(biāo)為時(shí),.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)M為x軸的正半軸上的一個(gè)動點(diǎn).
①若點(diǎn)P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點(diǎn)M,求AP的長.
②若,是否存在點(diǎn)N,滿足,且AN的中點(diǎn)恰好在橢圓E上?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)①;②存在點(diǎn)滿足題意.
【解析】
(1)根據(jù)題意可知,可求出P點(diǎn)坐標(biāo),代入方程求出即可;
(2)①設(shè),則可表示出圓心坐標(biāo)可設(shè)為,,根據(jù)圓的性質(zhì)及點(diǎn)P在橢圓上列出方程組求解即可;
②設(shè),,根據(jù), AN的中點(diǎn)恰好在橢圓E上,且得到點(diǎn)坐標(biāo),即可求解.
(1)因?yàn)?/span>是橢圓E的上頂點(diǎn),所以.
當(dāng)點(diǎn)P的橫坐標(biāo)為時(shí),.
設(shè),則,解得,
所以橢圓E的標(biāo)準(zhǔn)方程為.
(2)①設(shè),則以AP為直徑的圓的圓心坐標(biāo)可設(shè)為.
又因?yàn)?/span>,所以.
因?yàn)?/span>,所以,
得.
因?yàn)辄c(diǎn)P在橢圓E上,所以,
與聯(lián)立解得(負(fù)值舍去),
所以.
②設(shè),.
因?yàn)?/span>,
所以,
解得,
所以AN的中點(diǎn)坐標(biāo)為
因?yàn)?/span>AN的中點(diǎn)在橢圓E上,
所以.(*)
因?yàn)?/span>,所以.
因?yàn)辄c(diǎn)P在橢圓E上,
所以,(**)
與聯(lián)立消去得
.
又因?yàn)?/span>,所以,
代入(*)式和(**)式得
消去m得.
又因?yàn)?/span>.所以,
代入(**)式和,
解得(負(fù)值舍去),
故.
綜上,存在點(diǎn),滿足
且AN的中點(diǎn)恰好在橢圓E上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在1與2之間插入個(gè)正數(shù),使這個(gè)數(shù)成等比數(shù)列;又在1與2之間插入個(gè)正數(shù),使這個(gè)數(shù)成等差數(shù)列.記.
(1)求數(shù)列和的通項(xiàng);
(2)當(dāng)時(shí),比較與大小并證明結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,圓.
(1)試證明:不論為何實(shí)數(shù),直線和圓總有兩個(gè)交點(diǎn);
(2)當(dāng)取何值時(shí),直線被圓截得的弦長最短,并求出最短弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過點(diǎn)F,斜率為1的直線與拋物線C交于點(diǎn)A,B,且.
(1)求拋物線C的方程;
(2)過點(diǎn)Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點(diǎn)D、E,若直線DR,ER分別交直線于M,N兩點(diǎn),求|MN|取最小值時(shí)直線DE的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且直線與曲線C有兩個(gè)不同的交點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)已知M為曲線C上一點(diǎn),且曲線C在點(diǎn)M處的切線與直線垂直,求點(diǎn)M的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)對序列、、、,記,,其中表示和兩個(gè)數(shù)中最大的數(shù).
(1)對于數(shù)對序列,,求,的值;
(2)記為、、、四個(gè)數(shù)中最小值,對于由兩個(gè)數(shù)對、組成的數(shù)對序列、和、,試分別對和的兩種情況比較和的大小;
(3)在由個(gè)數(shù)對、、、、組成的所有數(shù)對序列中,寫出一個(gè)數(shù)對序列使最小,并寫出的值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線的兩頂點(diǎn)為,,虛軸兩端點(diǎn)為,,兩焦點(diǎn)為,,若以為直徑的圓內(nèi)切于菱形,切點(diǎn)分別為,,,.則
(1)雙曲線的離心率______;
(2)菱形的面積與矩形的面積的比值______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:當(dāng)時(shí),對任意恒成立;
(2)求函數(shù)的極值;
(3)當(dāng)時(shí),若存在且,滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過F的直線交拋物線C于,兩點(diǎn).
(Ⅰ)當(dāng)時(shí),求的值;
(Ⅱ)過點(diǎn)A作拋物線準(zhǔn)線的垂線,垂足為E,過點(diǎn)B作EF的垂線,交拋物線于另一點(diǎn)D,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com