【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號(hào)召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來(lái)愈多,每年春暖以后到寒冬前,昆蟲大量活動(dòng)與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)y(單位:個(gè))與一定范圍內(nèi)的溫度x(單位:℃)有關(guān),于是科研人員在3月份的31天中隨機(jī)選取了5天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的5組觀察數(shù)據(jù)如表:

日期

2

7

15

22

30

溫度/℃

10

11

13

12

8

產(chǎn)卵數(shù)y/個(gè)

22

24

29

25

16

1)從這5天中任選2天,記這2天藥用昆蟲的產(chǎn)卵數(shù)分別為m,n,求“事件m,n均不小于24”的概率?

2)科研人員確定的研究方案是:先從這5組數(shù)據(jù)中任選2組,用剩下的3組數(shù)據(jù)建立線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

①若選取的是32日與330日這2組數(shù)據(jù),請(qǐng)根據(jù)37日、15日和22日這三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程?

②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對(duì)值均不超過(guò)2個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)①中所得的線性回歸方程是否可靠?

附公式:

【答案】1;(2)①;②見解析

【解析】

1)用列舉法以及古典概型的概率公式,求解即可;

2)①根據(jù)37日、15日和22日這三組數(shù)據(jù),分別計(jì)算出其平均值,結(jié)合參考公式求出回歸直線方程;②將32日與330日的中的溫度代入方程,得出線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對(duì)值,看是否超過(guò)2,再判斷即可.

1)依題意得的所有情況為,共有10

設(shè)m,n均不小于24”為事件,則事件包含的基本事件為,共有3個(gè)

,即“事件m,n均不小于24”的概率為

2)①由數(shù)據(jù)可得

,

所以y關(guān)于x的線性回歸方程為

②由①可得y關(guān)于x的線性回歸方程為

當(dāng)時(shí),

當(dāng)時(shí),

所以線性回歸方程是可靠的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶節(jié)期間,滕州市實(shí)驗(yàn)小學(xué)舉行了一次科普知識(shí)競(jìng)賽活動(dòng),設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)及紀(jì)念獎(jiǎng),獲獎(jiǎng)人數(shù)的分配情況如圖所示,各個(gè)獎(jiǎng)品的單價(jià)分別為:一等獎(jiǎng)50元、二等獎(jiǎng)20元、三等獎(jiǎng)10元,四等獎(jiǎng)5元,紀(jì)念獎(jiǎng)2元,則以下說(shuō)法中不正確的是(

A.獲紀(jì)念獎(jiǎng)的人數(shù)最多B.各個(gè)獎(jiǎng)項(xiàng)中二等獎(jiǎng)的總費(fèi)用最高

C.購(gòu)買獎(jiǎng)品的費(fèi)用平均數(shù)為6.65D.購(gòu)買獎(jiǎng)品的費(fèi)用中位數(shù)為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,己知是橢圓的右焦點(diǎn),是橢圓上位于軸上方的任意一點(diǎn),過(guò)作垂直于的直線交其右準(zhǔn)線于點(diǎn).

1)求橢圓的方程;

2)若,求證:直線與橢圓相切;

3)在橢圓上是否存在點(diǎn),使四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y22pxp0)上一點(diǎn)P1,2),作兩條直線分別交拋物線于Ax1,y1),Bx2,y2),當(dāng)PAPB的斜率存在且傾斜角互補(bǔ)時(shí):

1)求y1+y2的值;

2)若直線ABy軸上的截距b[1,3]時(shí),求ABP面積SABP的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)上的單調(diào)性;

(2)設(shè),當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn),分別是橢圓的左、右焦點(diǎn),為等腰三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)左焦點(diǎn)作直線交橢圓于兩點(diǎn),其中,另一條過(guò)的直線交橢圓于兩點(diǎn)(不與重合),且點(diǎn)不與點(diǎn)重合. 過(guò)軸的垂線分別交直線,,.

①求點(diǎn)坐標(biāo); ②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)求上的極大值與極小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案