【題目】某手機(jī)廠商在銷售某型號手機(jī)時開展“手機(jī)碎屏險”活動.用戶購買該型號手機(jī)時可選購“手機(jī)碎屏險”,保費(fèi)為元,若在購機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計后得到下表(其中表示保費(fèi)為元時愿意購買該“手機(jī)碎屏險”的用戶比例):
(1)根據(jù)上面的數(shù)據(jù)計算得,求出關(guān)于的線性回歸方程;
(2)若愿意購買該“手機(jī)碎屏險”的用戶比例超過,則手機(jī)廠商可以獲利,現(xiàn)從表格中的種保費(fèi)任取種,求這種保費(fèi)至少有一種能使廠商獲利的概率.
附:回歸方程中斜率和截距的最小二乘估計分別為,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),其離心率為.
(1)求橢圓的方程;
(2)若不經(jīng)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,證明:直線經(jīng)過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,,,和是兩個邊長為2的正三角形,,為的中點(diǎn),為的中點(diǎn).
(1)證明:平面.
(2)在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為?若存在,求出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令求函數(shù)的極值.
(3)若,正實(shí)數(shù)滿足,
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計局統(tǒng)計了我國近10年(2009年2018年)的GDP(GDP是國民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個國家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計圖.
根據(jù)該折線統(tǒng)計圖,下面說法錯誤的是
A. 這10年中有3年的GDP增速在9.00%以上
B. 從2010年開始GDP的增速逐年下滑
C. 這10年GDP仍保持6.5%以上的中高速增長
D. 2013年—2018年GDP的增速相對于2009年—2012年,波動性較小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,,,的面積為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)作與軸不重合的直線交橢圓于,兩點(diǎn),連接,分別交直線于,,兩點(diǎn),若直線,的斜率分別為,,試問:是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,底面,是棱的中點(diǎn),且,.
(1)求證:平面.
(2)求二面角的大小;
(3)如果是棱的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是棱長為2的正方體,為面對角線上的動點(diǎn)(不包括端點(diǎn)),平面交于點(diǎn),于.
(1)試用反證法證明直線與是異面直線;
(2)設(shè),將長表示為的函數(shù),并求此函數(shù)的值域;
(3)當(dāng)最小時,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓G的中心在坐標(biāo)原點(diǎn),其中一個焦點(diǎn)為圓F:x2+y2﹣2x=0的圓心,右頂點(diǎn)是圓F與x軸的一個交點(diǎn).已知橢圓G與直線l:x﹣my﹣1=0相交于A、B兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求△AOB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com