已知函數(shù),
(1)求函數(shù)的最小正周期和單調遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取得最值時的值。

(1)最小正周期,;(2),此時;
,此時

解析試題分析:(1)的最小正周期 --------3分
,即時,單調遞減,所以得單調遞減區(qū)間是----------3分
(2),則
,所以,此時,即
,此時,即------------6分
考點:函數(shù)的性質:周期性、單調性和最值。
點評:求三角函數(shù)的周期、單調區(qū)間、最值等,一般用化一公式化為的形式。在求函數(shù)的單調區(qū)間和最值對應的x的值時時一定要注意的正負。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結論;
(Ⅱ)當時,恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域;
(Ⅲ)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知函數(shù) 
(Ⅰ)設在區(qū)間的最小值為,求的表達式;
(Ⅱ)設,若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知對于任意實數(shù)滿足,當時,.
(1)求并判斷的奇偶性;
(2)判斷的單調性,并用定義加以證明;
(3)已知,集合,
集合,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題14分)已知函數(shù),設
(Ⅰ)求F(x)的單調區(qū)間;
(Ⅱ)若以圖象上任意一點為切點的切線的斜率 恒成立,求實數(shù)的最小值。
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說名理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知R,函數(shù)
(1)求的單調區(qū)間;
(2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知函數(shù),,其中,設
(1)判斷的奇偶性,并說明理由;
(2)若,求使成立的x的集合。

查看答案和解析>>

同步練習冊答案