已知函數(shù)時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍。

(1)函數(shù)的遞增區(qū)間是,遞減區(qū)間是;(2).

解析試題分析:(1)
,
,函數(shù)的單調(diào)區(qū)間如下表:








 


 
 

­
極大值
¯
極小值
­
所以函數(shù)的遞增區(qū)間是,遞減區(qū)間是;
(2),當(dāng)時(shí),為極大值,
,則為最大值,
要使恒成立,
,得.
考點(diǎn):本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、求函數(shù)極值、最值。
點(diǎn)評(píng):典型題,導(dǎo)數(shù)的應(yīng)用,是高考必考內(nèi)容,注意解答成立問(wèn)題的一般方法步驟。恒成立問(wèn)題,往往通過(guò)分離參數(shù)法,轉(zhuǎn)化成求函數(shù)最值問(wèn)題,應(yīng)用導(dǎo)數(shù)知識(shí)加以解答。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)時(shí),在區(qū)間上為減函數(shù);
(3)當(dāng),函數(shù)的圖象恒在函數(shù)圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)過(guò)點(diǎn)能作幾條直線與曲線相切?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)定義在上的函數(shù),,當(dāng)時(shí),.且對(duì)任意的。
(1)證明:
(2)證明:對(duì)任意的,恒有
(3)證明:上的增函數(shù);
(4)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

不等式選講已知函數(shù)
⑴當(dāng)時(shí),求函數(shù)的最小值;
⑵當(dāng)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/6/xug341.png" style="vertical-align:middle;" />時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù),且方程有兩個(gè)實(shí)根.
(1)求函數(shù)的解析式;
(2)設(shè),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),。
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取得最值時(shí)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
設(shè)函數(shù)為實(shí)常數(shù))為奇函數(shù),函數(shù)
(Ⅰ)求的值;
(Ⅱ)求上的最大值;
(Ⅲ)當(dāng)時(shí),對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案