(本小題滿分14分)
已知函數(shù),其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)時(shí),在區(qū)間上為減函數(shù);
(3)當(dāng),函數(shù)的圖象恒在函數(shù)圖象上方,求實(shí)數(shù)的取值范圍.

(1)函數(shù)在區(qū)間上的最小值為
(2)設(shè)任意,且,則利用作差法,結(jié)合變形,定號(hào),下結(jié)論得到證明,注意變形化到最簡即可。
(3)

解析試題分析:解:(1)函數(shù)是偶函數(shù),


 
即函數(shù)的圖象是頂點(diǎn)為,對稱軸為且開口向下的拋物線,
在區(qū)間上遞增,在區(qū)間上遞減

 函數(shù)在區(qū)間上的最小值為
(2)設(shè)任意,且,則


 



當(dāng)時(shí),函數(shù)在區(qū)間上為減函數(shù).
(3)對于,函數(shù)的圖象恒在函數(shù)圖象上方,等價(jià)不等式
上恒成立,
上恒成立,
,解得 
所求實(shí)數(shù)的取值范圍為 
考點(diǎn):函數(shù)單調(diào)性和不等式
點(diǎn)評:解決的關(guān)鍵是根據(jù)二次函數(shù)的性質(zhì)來求解證明,屬于基礎(chǔ)題。。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).

(1)證明函數(shù)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),的兩個(gè)極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時(shí),求函數(shù)圖象的對稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)上是偶函數(shù),其圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共12分)
已知函數(shù)
(1)若對于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個(gè)極值點(diǎn),,求證:;
(3)設(shè)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案