【題目】設(shè)等比數(shù)列{}的公比為 q(q > 0,q = 1),前 n 項和為 Sn,且 2a1a3 = a4,數(shù)列{}的前 n 項和 Tn 滿足2Tn = n(bn - 1),n ∈N,b2 = 1.

(1) 求數(shù)列 {},{}的通項公式;

(2) 是否存在常數(shù) t,使得 {Sn+ } 為等比數(shù)列?說明理由;

(3) 設(shè) cn =,對于任意給定的正整數(shù) k(k ≥2), 是否存在正整數(shù) l,m(k < l < m), 使得 ck,c1,cm 成等差數(shù)列?若存在,求出 l,m(用 k 表示),若不存在,說明理由.

【答案】(1) ; (2)存在,使得是公比為的等比數(shù)列;(3)存在符合題意.

【解析】

(1)利用基本量運算可得利用n≥2時,2bn=2(TnTn﹣1),整理可得

(2)由Sn,分別討論t時和t,由等比數(shù)列的定義證明即可;

(3)假設(shè)對于任意給定的正整數(shù)kk≥2),存在正整數(shù)lmklm),使得ck,c1,cm成等差數(shù)列.則,整理得:2m+1,取l=2k即可得解.

(1)等比數(shù)列{an}的公比為qq>0,q1),∵2a1a3a4,

,可得a1

anqn﹣1

數(shù)列{bn}的前n項和Tn滿足2Tnnbn﹣1),nN*,b2=1.

n≥2時,2bn=2(TnTn﹣1)=nbn﹣1)﹣(n﹣1)(bn﹣1﹣1),

化為:(n﹣2)bn=(n﹣1)bn﹣1+1,

n≥3時,兩邊同除以(n﹣2)(n﹣1),可得:,

利用累加求和可得:b2+1,化為:bn=2n﹣3(n≥3),

n=1時,2b1b1﹣1,解得b1=﹣1,

經(jīng)過驗證n=1,2時也滿足.

bn=2n﹣3.

(2)由(1)可知:an,q>0,q≠1.

Sn

①若t時,則Sn,∴q

即數(shù)列{Sn}是公比為q的等比數(shù)列.

②若t時,則Sn

設(shè)A,B.(其中AB≠0).

q不為常數(shù).

綜上:存在t時,使得數(shù)列{Sn}是公比為q的等比數(shù)列.

(3)由(1)可知:bn=2n﹣3.

,

假設(shè)對于任意給定的正整數(shù)kk≥2),存在正整數(shù)l,mklm),使得ck,c1,cm成等差數(shù)列.

,整理得:2m+1

l=2k,則2m+1=(4k+1)(2k+1),解得m=4k2+3k

即存在l=2k,m=4k2+3k.符合題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,在高三年級中隨機選取名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于小時的有人,在這人中分數(shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時間不足于小時的人中,在檢測考試中數(shù)學(xué)平均成績不足分的占.

1)請完成列聯(lián)表;并判斷是否有的把握認為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;

分數(shù)不少于

分數(shù)不足

合計

線上學(xué)習(xí)時間不少于小時

線上學(xué)習(xí)時間不足小時

合計

2)在上述樣本中從分數(shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于小時和線上學(xué)習(xí)時間不足小時的學(xué)生共名,若在這名學(xué)生中隨機抽取人,求這人每周線上學(xué)習(xí)時間都不足小時的概率.(臨界值表僅供參考)

(參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 與圓相交的弦長等于橢圓 )的焦距長.

(1)求橢圓的方程;

(2)已知為原點,橢圓與拋物線)交于、兩點,點為橢圓上一動點,若直線軸分別交于、兩點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計

獲獎

6

不獲獎

合計

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當時,求函數(shù)的極值;

2)當時,若不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,是正方形,,,且,,、分別為棱、的中點.

(1)求證:平面;

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某外賣企業(yè)兩位員工今年月某天日派送外賣量的數(shù)據(jù)(單位:件),如莖葉圖所示針對這天的數(shù)據(jù),下面說法錯誤的是( )

A.阿朱的日派送量的眾數(shù)為B.阿紫的日派送量的中位數(shù)為

C.阿朱的日派送量的中位數(shù)為D.阿朱的日派送外賣量更穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)雙曲線的上焦點為,上頂點為,點為雙曲線虛軸的左端點,已知的離心率為,且的面積.

(1)求雙曲線的方程;

(2)設(shè)拋物線的頂點在坐標原點,焦點為,動直線相切于點,與的準線相交于點,試推斷以線段為直徑的圓是否恒經(jīng)過軸上的某個定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對于任意,仍為數(shù)列中的項,則稱數(shù)列為“回歸數(shù)列”.

1)己知(),判斷數(shù)列是否為“回歸數(shù)列”,并說明理由;

2)若數(shù)列為“回歸數(shù)列”,,,且對于任意,均有成立.①求數(shù)列的通項公式;②求所有的正整數(shù)st,使得等式成立.

查看答案和解析>>

同步練習(xí)冊答案