【題目】下列命題為真命題的是(

A.設(shè)命題:,.:,;

B.,,;

C.是定義在上的減函數(shù),的充要條件;

D.,,()是全不為0的實(shí)數(shù),不等式解集相等的充分不必要條件.

【答案】ABC

【解析】

特稱命題的否定是將存在詞變?yōu)槿Q量詞后否定結(jié)論;結(jié)合不等式的性質(zhì)求解;

A選項(xiàng):特稱命題的否定是將存在詞變?yōu)槿Q量詞后否定結(jié)論,所以命題:,.則:,,A是真命題;

B選項(xiàng):,

,,B是真命題;

C選項(xiàng):若,則

在R上遞減,故,充分性滿足;若,則的逆否命題是:

,則,由,得

在R上遞減,故,即,所以必要性滿足.

綜上:若是定義在上的減函數(shù),則“”是“”的充要條件,C是真命題;

D選項(xiàng):設(shè),則

所以不等式等價(jià)于.

,此時(shí)等價(jià)于,此時(shí)兩者解集相等;

,此時(shí)等價(jià)于,此時(shí)兩者解集不相等;

若不等式解集為,則兩個(gè)不等式的系數(shù)沒(méi)有關(guān)系。

所以“”是“不等式解集相等”的既不充分也不必要條件,D是假命題;

故選:ABC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)f(x)的最小正周期及單調(diào)減區(qū)間;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),當(dāng)直線軸平行時(shí),直線被橢圓截得的線段長(zhǎng)為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn)使得直線變化時(shí),總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)的圖像過(guò)點(diǎn),且對(duì)于任意實(shí)數(shù),不等式恒成立

(1)求的表達(dá)式;

(2)設(shè),若上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,左準(zhǔn)線方程為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線交橢圓, 兩點(diǎn).

①若直線經(jīng)過(guò)橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足, .求證: 為定值;

②若為原點(diǎn)),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(xR),已知g(x)=f(x)﹣f′(x)是奇函數(shù)

(1)求b、c的值.

(2)求g(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx+1A0,ω0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為

1)求函數(shù)fx)的解析式;

2)求函數(shù)yfx)的單調(diào)增區(qū)間;

3)設(shè)α∈(0,),則f)=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),其導(dǎo)函數(shù)為f′(x),若f′(x) < f (x),且 f (x+1)=f (3-x),f (2 015)=2,則不等式f (x)<2ex-1的解集為(  )

A. (1,+∞) B. (e,+∞) C. (-∞,0) D. (-∞,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行

(1)的值;

(2)的單調(diào)區(qū)間和最小值;

(3)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案