【題目】某市為了解本市2萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,現(xiàn)從某校隨機(jī)抽取了50名學(xué)生,將所得成績整理后,發(fā)現(xiàn)其成績?nèi)拷橛?/span>之間,將其成績按如下分成六組,得到頻數(shù)分布表
成績 | ||||||
人數(shù) | 4 | 10 | 16 | 10 | 6 | 4 |
(1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估算該校50名學(xué)生成績的平均值和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)以該校50名學(xué)生成績的頻率作為概率,試估計(jì)該市分?jǐn)?shù)在的人數(shù).
【答案】(1)見解析(2)平均值68.2 中位數(shù)66.875(3)4000
【解析】試題分析:(1)根據(jù)頻率分布直方圖縱坐標(biāo)等于頻率除以組距,再描線畫圖(2)根據(jù)平均值等于組中值乘以對應(yīng)概率的和,中位數(shù)對應(yīng)概率為0.5分別計(jì)算平均值和中位數(shù)(3)根據(jù)頻數(shù)等于總數(shù)乘以對應(yīng)概率得分?jǐn)?shù)在的人數(shù).
試題解析:解:(Ⅰ)
(Ⅱ);
由已知可設(shè)中位數(shù)為,則;
所以,所求中位數(shù)為.
(Ⅲ)該市分?jǐn)?shù)在的人數(shù),故所求人數(shù)為人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實(shí)數(shù)a的范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn) , 且存在 滿足 ,令函數(shù) ,試判斷 零點(diǎn)的個(gè)數(shù)并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為A、B、C,田忌的三匹馬分別為a、b、c.三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示:A>a>B>b>C>c. (Ⅰ)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(Ⅱ)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實(shí)情,得知齊王第一場必出上等馬.那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知函數(shù)在處的切線方程為
(1)若= ,求證:曲線上的任意一點(diǎn)處的切線與直線和直線
圍成的三角形面積為定值;
(2)若,是否存在實(shí)數(shù),使得對于定義域內(nèi)的任意都成立;
(3)在(2)的條件下,若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在的直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線的方程為x﹣2y﹣5=0.
(1)求直線BC的方程;
(2)求直線BC關(guān)于CM的對稱直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x,對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0),其部分圖象如圖所示,點(diǎn)P,Q分別為圖象上相鄰的最高點(diǎn)與最低點(diǎn),R是圖象與x軸的交點(diǎn),若P點(diǎn)的橫坐標(biāo)為 ,f( )= ,PR⊥QR,則函數(shù)f(x)的解析式可以是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com