(本小題滿(mǎn)分12分)
在四棱錐中,,,平面,的中點(diǎn),

(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點(diǎn),求證:平面平面;
(Ⅲ)求二面角的大小。.

(Ⅰ) (Ⅱ)關(guān)鍵證明平面 (Ⅲ)

解析試題分析:解:(Ⅰ)在中,,∴,……1分
中,,,∴,…………2分
…………3分
…………………………………………4分
(Ⅱ)∵平面,∴…………………………5分
,
平面              ……………………6分    
、分別為、中點(diǎn),
   ∴平面 ……………………7分
平面,∴平面平面…………8分
(Ⅲ)取的中點(diǎn),連結(jié),則,
平面,過(guò),
連接,則為二面角的平面角!10分
的中點(diǎn),
,又,∴
即二面角的大小為…………………………12分。
考點(diǎn):錐體的體積;直線與平面、平面與平面垂直的判定定理;平面角的二面角。
點(diǎn)評(píng):對(duì)于比較規(guī)則的幾何體,建立空間直角坐標(biāo)系對(duì)解決問(wèn)題有很好幫助,特別是求二面角。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)
如圖,在棱長(zhǎng)為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分16分)如圖:AD=2,AB=4的長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).

(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問(wèn):在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,

(Ⅰ)若異面直線所成的角為,求棱柱的高;
(Ⅱ)設(shè)的中點(diǎn),與平面所成的角為,當(dāng)棱柱的高變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面中    ,棱分別為的中點(diǎn).

(1)求 >的值;
(2)求證:
(3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.(本題滿(mǎn)分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點(diǎn).

(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)在正四棱錐中,側(cè)棱的長(zhǎng)為,所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個(gè)頂點(diǎn)都在球的表面上,求此球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
已知平面//平面,AB、CD是夾在、間的兩條線段,A、C在內(nèi),B、D在內(nèi),點(diǎn)E、F分別在AB、CD上,且,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案