已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(-2,5),且斜率為-
34

(Ⅰ)求直線(xiàn)l的方程;
(Ⅱ)求與直線(xiàn)l切于點(diǎn)(2,2),圓心在直線(xiàn)x+y-11=0上的圓的方程.
分析:(Ⅰ)由直線(xiàn)方程的點(diǎn)斜式,可得直線(xiàn)方程,化為一般式即可;
(Ⅱ)同(Ⅰ)可得過(guò)點(diǎn)(2,2)與l垂直的直線(xiàn)方程,聯(lián)立方程解方程組可得圓心為(5,6),可得半徑,可得圓的標(biāo)準(zhǔn)方程.
解答:解:(Ⅰ)由直線(xiàn)方程的點(diǎn)斜式,可得方程為y-5=-
3
4
(x+2)
,
化為一般式即得所求直線(xiàn)方程為:3x+4y-14=0.…(4分)
(Ⅱ)過(guò)點(diǎn)(2,2)與l垂直的直線(xiàn)方程為4x-3y-2=0,…(6分)
x+y-11=0
4x-3y-2=0.
得圓心為(5,6),…(8分)
∴半徑R=
(5-2)2+(6-2)2
=5
,…(10分)
故所求圓的方程為(x-5)2+(y-6)2=25.                          …(12分)
點(diǎn)評(píng):本題考查圓的切線(xiàn)方程,涉及直線(xiàn)的點(diǎn)斜式和圓的標(biāo)準(zhǔn)方程,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(3,0).
(1)若直線(xiàn)l平行于直線(xiàn)2x-y+1=0,求直線(xiàn)l的方程;
(2)若點(diǎn)O(0,0)和點(diǎn)M(6,6)到直線(xiàn)l的距離相等,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(2,3),傾斜角α=
π6
,
(Ⅰ)寫(xiě)出直線(xiàn)l的參數(shù)方程.
(Ⅱ)設(shè)l與圓x2+y2=4相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)L經(jīng)過(guò)點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線(xiàn)L的方程是
x=-4和4x+3y+25=0
x=-4和4x+3y+25=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點(diǎn)D,BC=4cm,
(1)試判斷OD與AC的關(guān)系;
(2)求OD的長(zhǎng);
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角α=
4

(1)寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(極坐標(biāo)與參數(shù)方程)
已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(2,1),傾斜角α=
π4
,
(Ⅰ)寫(xiě)出直線(xiàn)l的參數(shù)方程;
(Ⅱ)設(shè)直線(xiàn)l與圓O:ρ=2相交于兩點(diǎn)A,B,求線(xiàn)段AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案