【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 + = .
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范圍.
【答案】
(1)解:△ABC中, + = ,
∴ + = ,
∴ = ,
解得b= ;
(2)解:∵cosB+ sinB=2,
∴cosB=2﹣ sinB,
∴sin2B+cos2B=sin2B+ =4sin2B﹣4 sinB+4=1,
∴4sin2B﹣4 sinB+3=0,
解得sinB= ;
從而求得cosB= ,
∴B= ;
由正弦定理得 = = = =1,
∴a=sinA,c=sinC;
由A+B+C=π得A+C= ,
∴C= ﹣A,且0<A< ;
∴a+c=sinA+sinC
=sinA+sin( ﹣A)
=sinA+sin cosA﹣cos sinA
= sinA+ cosA
= sin(A+ ),
∵0<A< ,∴ <A+ < ,
∴ <sin(A+ )≤1,
∴ < sin(A+ )≤ ,
∴a+c的取值范圍是( , ].
【解析】(1)應(yīng)用正弦、余弦定理化簡(jiǎn) + = ,即可求出b的值;(2)根據(jù)cosB+ sinB=2與平方關(guān)系sin2B+cos2B=1,求得sinB、cosB,從而求得B的值,再由正弦定理求得a=sinA,c=sinC;利用A+B+C=π求得C= ﹣A,且0<A< ;
再利用三角恒等變換求a+c=sinA+sinC的取值范圍.
【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 的定義域是( )
A.[﹣2,2]
B.(﹣∞,﹣2]∪[2,+∞)
C.(﹣2,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù) 圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,縱坐標(biāo)不變
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,縱坐標(biāo)不變
D.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間[0,1]內(nèi)隨機(jī)取兩個(gè)數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實(shí)根的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 ( )上的值域?yàn)閇﹣1,2],則θ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2﹣x,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長(zhǎng)方臺(tái)形狀的物體垛積.設(shè)隙積共n層,上底由長(zhǎng)為a個(gè)物體,寬為b個(gè)物體組成,以下各層的長(zhǎng)、寬依次各增加一個(gè)物體,最下層成為長(zhǎng)為c個(gè)物體,寬為d個(gè)物體組成,沈括給出求隙積中物體總數(shù)的公式為S= .已知由若干個(gè)相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P(2,0),曲線C的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的普通方程和極坐標(biāo)方程;
(Ⅱ)過(guò)點(diǎn)P且傾斜角為 的直線l交曲線C于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com