【題目】設(shè)雙曲線的左,右焦點(diǎn)分別為F1,F2,過(guò)F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為( )
A. B. 11
C. 12 D. 16
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,SA=SB=SC=SD,點(diǎn)E,M,N分別是BC,CD,SC的中點(diǎn),點(diǎn)P是MN上的一點(diǎn).
(1)證明:EP∥平面SBD;
(2)求四棱錐S﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球、兩個(gè)“”號(hào)球、三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球、五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒(méi)有獎(jiǎng)金.
(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額服從正態(tài)分布,某天有為顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù);
(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列;
(Ⅲ)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),請(qǐng)問(wèn):這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)若在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)若有唯一的零點(diǎn),試求的值.(注:為取整函數(shù),表示不超過(guò)的最大整數(shù),如;以下數(shù)據(jù)供參考:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
兩縣城A和B相聚20km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對(duì)城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k ,當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)稱A和城B的總影響度為0.0065.(1)將y表示成x的函數(shù);(11)討論(1)中函數(shù)的單調(diào)性,并判斷弧上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到城A的距離,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直.
(1)求,的值;
(2)如果當(dāng)時(shí),都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.
(1)若x∈[-,],且a∥(b+c),求x的值;
(2)若存在x∈R,使得(a+d)⊥(b+c),求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com