【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.
【答案】(1) 時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間;(2)見解析.
【解析】
(1)由題意知求出f(x)>40時(shí)x的取值范圍即可;
(2)分段求出g(x)的解析式,判斷g(x)的單調(diào)性,再說明其實(shí)際意義.
(1)由題意知,當(dāng)時(shí),
,
即,
解得或,
∴時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間;
(2)當(dāng)時(shí),
;
當(dāng)時(shí),
;
∴;
當(dāng)時(shí),單調(diào)遞減;
當(dāng)時(shí),單調(diào)遞增;
說明該地上班族中有小于的人自駕時(shí),人均通勤時(shí)間是遞減的;
有大于的人自駕時(shí),人均通勤時(shí)間是遞增的;
當(dāng)自駕人數(shù)為時(shí),人均通勤時(shí)間最少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個(gè)數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個(gè)新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設(shè){an}的首項(xiàng)為1,各項(xiàng)為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項(xiàng)和Sn;
(3)設(shè)bn=qn﹣1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對(duì)任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項(xiàng)數(shù)總是bn?若存在,請(qǐng)給出一個(gè)滿足題意的等差數(shù)列{an};若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足
(1)求曲線的方程;
(2)設(shè)曲線與 軸交于兩點(diǎn),點(diǎn)是曲線上異于的任意一點(diǎn),直線分別交直線:于點(diǎn),試問軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月10日, 我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí):若,則長(zhǎng)勢(shì)為一級(jí);若,則長(zhǎng)勢(shì)為二級(jí);若,則長(zhǎng)勢(shì)為三級(jí);為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號(hào) | |||||
種植地編號(hào) | |||||
(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;
(2)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76的為優(yōu)良.
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= ﹣ (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog3an , 求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com