對于三次函數(shù)),定義:設f″(x)是函數(shù)yf′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,fx0))為函數(shù)的“拐點”.有同學發(fā)現(xiàn):“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,若函數(shù),則=( )
A.2010B.2011C.2012D.2013
A

試題分析:因為函數(shù) =,
所以令h(x)=,m(x)=,則g(x)=h(x)+m(x).
則h′(x)=x2-x+3,h″(x)=2x-1,令h″(x)=0,可得x=,故h(x)的對稱中心為(,1).
設點p(x0,y0)為曲線上任意一點,則點P關于(,1)的對稱點P′(1-x0,2-y0)也在曲線上,∴h(1-x0)=2-y0 ,∴h(x0)+h(1-x0)=y0+(2-y0)=2.
所以
==1005×2=2010.
由于函數(shù)m(x)=的對稱中心為(,0),可得m(x0)+m(1-x0)=0.

==1005×0=0.
所以= +
=2010+0=2010,故答案為2010.
點評:難題,運用化歸與轉化的數(shù)學思想方法,將函數(shù)g(x)的研究進行拆分,簡化了解題過程。解答此類題目,心理素質(zhì)首先要過關,不畏難,靜心思考。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

上是減函數(shù),則的取值范圍是    __.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)設函數(shù),且的極值點.
(Ⅰ) 若的極大值點,求的單調(diào)區(qū)間(用表示);
(Ⅱ) 若恰有兩解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知是函數(shù)的一個極值點. 
(Ⅰ)求的值;
(Ⅱ)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

計算下列定積分(本小題滿分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是定義在上的奇函數(shù),且當時,不等式成立,若,,,則的大小關系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
設函數(shù)(a>0,b,cÎR),曲線在點P(0,f (0))處的切線方程為
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實數(shù)a使得過點(0,2)可作曲線的三條不同切線,若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果導函數(shù)圖像的頂點坐標為,那么曲線上任一點的切線的傾斜角的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案