【題目】是自然對數(shù)的底數(shù),,已知函數(shù),.
(1)若函數(shù)有零點,求實數(shù)的取值范圍;
(2)對于,證明:當時,.
【答案】(1)(2)證明見解析
【解析】
(1)函數(shù)有零點等價于對應(yīng)方程有實數(shù)解,進而分離參數(shù),并通過構(gòu)造函數(shù),結(jié)合求導(dǎo),利用函數(shù)的單調(diào)性來確定其最值,從而得以確定參數(shù)的范圍;(2)通過所要證明的不等式的等價轉(zhuǎn)化,轉(zhuǎn)化為兩個不等式問題,通過分類討論分別加以證明,構(gòu)造函數(shù)并求導(dǎo),結(jié)合函數(shù)的單調(diào)性與最值來證明與轉(zhuǎn)化.
(1)由函數(shù)有零點知,方程有實數(shù)解,因為,所以.設(shè),,
則的取值范圍轉(zhuǎn)化為函數(shù)在上的值域.
因為,所以當,時,函數(shù)在上單調(diào)遞增,當時,函數(shù)在上單調(diào)遞減,
故函數(shù)在時,取得最大值,
又上,,所以函數(shù)在上的值域為,.當時,,
所以函數(shù)在上的值域為,.
從而函數(shù)有零點時,實數(shù)的取值范圍為,
(2)可以轉(zhuǎn)化為證明兩個不等式①,②.
設(shè),所以,
當時,,函數(shù)在上單調(diào)遞減,當時,
,函數(shù)在上單調(diào)遞增.故函數(shù)在時,取得最小值
,所以.
得證①
設(shè),有,當時,.函數(shù)在上單調(diào)遞減;當時,函數(shù),在上單調(diào)遞增.
故函數(shù)在時,取得最小值.
所以,得.(僅當時取等號)
又由為增函數(shù),得②.
合并①②得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國的數(shù)學(xué)家費馬(PierredeFermat)曾在一本數(shù)學(xué)書的空白處寫下一個看起來很簡單的猜想:當整數(shù)時,找不到滿足的正整數(shù)解.該定理史稱費馬最后定理,也被稱為費馬大定理.費馬只是留下這個敘述并且說他已經(jīng)發(fā)現(xiàn)這個定理的證明妙法,只是書頁的空白處不夠無法寫下.費馬也因此為數(shù)學(xué)界留下了一個千古的難題,歷經(jīng)數(shù)代數(shù)學(xué)家們的努力,這個難題直到1993年才由我國的數(shù)學(xué)家毛桂成完美解決,最終證明了費馬大定理的正確性.現(xiàn)任取,則等式成立的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角系中,點A為曲線C:在第一象限的圖象上的動點,點E,G在曲線C的準線上,且點G在x軸的下方,圓O與準線相切,直線交曲線C于點B,交圓O于點D,H.
(1)當點H為曲線C的焦點,時,求;
(2)當點O為的內(nèi)心時,若,求點A的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,過點作拋物線的兩切線,切點為.
(1)求兩切點所在的直線方程;
(2)橢圓,離心率為,(1)中直線AB與橢圓交于點P,Q,直線的斜率分別為,,,若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是空氣質(zhì)量的一個重要指標,我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質(zhì)量為一級,在35μg/m3~75μg/m3之間空氣質(zhì)量為二級,在75μg/m3以上空氣質(zhì)量為超標.如圖是某市2019年12月1日到10日PM2.5日均值(單位:μg/m3)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.這10天中,12月5日的空氣質(zhì)量超標
B.這10天中有5天空氣質(zhì)量為二級
C.從5日到10日,PM2.5日均值逐漸降低
D.這10天的PM2.5日均值的中位數(shù)是47
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學(xué)的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽為一個焦點的橢圓,根據(jù)開普勒行星運動第二定律,可知太陽和地球的連線在相等的時間內(nèi)掃過相等的面積,某同學(xué)結(jié)合物理和地理知識得到以下結(jié)論:①地球到太陽的距離取得最小值和最大值時,地球分別位于圖中點和點;②已知地球公轉(zhuǎn)軌道的長半軸長約為千米,短半軸長約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國每逢春分(月日前后)和秋分(月日前后),地球會分別運行至圖中點和點,則由此可知我國每年的夏半年(春分至秋分)比冬半年(當年秋分至次年春分)要少幾天.以上結(jié)論正確的是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,橢圓的左、右焦點分別為,已知和都在橢圓上.
(1)求橢圓的方程;
(2)過點的直線與橢圓相交于兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com