【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.

現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為( )

A. B. C. D.

【答案】A

【解析】

由歸納推理得:設圖(3)中1個小陰影三角形的面積為S,則圖(3)中陰影部分的面積為:9S,又圖(3)中大三角形的面積為16S,由幾何概型中的面積型得解

設圖(3)中1個小陰影三角形的面積為S,

則圖(3)中陰影部分的面積為:9S,

又圖(3)中大三角形的面積為16S,

由幾何概型中的面積型可得:

此點取自陰影部分的概率為

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;

(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、分別是橢圓的左、右焦點.

1)若是該橢圓上的一個動點,求的最大值;

2)設過定點的直線與橢圓交于不同的兩點、,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,棱長為2,MN分別為A1BAC的中點.

(1)證明:MN//B1C;

(2)求A1B與平面A1B1CD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點為,左頂點為,線段的中點為,圓過點,且與交于, 是等腰直角三角形,則圓的標準方程是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結,的中點,則在翻折過程中,下列說法中所有正確的序號是_______.

①存在某個位置,使得;

②翻折過程中,的長是定值;

③若,則;

④若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知圓過點,且與直線相切于點,求圓的方程;

2)已知圓軸相切,圓心在直線上,且圓被直線截得的弦長為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】名學生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計算結果.

(1)甲不在兩端;

(2)甲、乙相鄰;

(3)甲、乙、丙三人兩兩不得相鄰;

(4)甲不在排頭,乙不在排尾。

查看答案和解析>>

同步練習冊答案