【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;
(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求的最大值;
(2)設過定點的直線與橢圓交于不同的兩點、,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為2,M,N分別為A1B,AC的中點.
(1)證明:MN//B1C;
(2)求A1B與平面A1B1CD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中,為的中點,將沿直線翻折成,連結,為的中點,則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則;
④若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有名學生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計算結果.
(1)甲不在兩端;
(2)甲、乙相鄰;
(3)甲、乙、丙三人兩兩不得相鄰;
(4)甲不在排頭,乙不在排尾。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com