精英家教網 > 高中數學 > 題目詳情

【題目】名學生排成一排,求分別滿足下列條件的排法種數,要求列式并給出計算結果.

(1)甲不在兩端;

(2)甲、乙相鄰;

(3)甲、乙、丙三人兩兩不得相鄰;

(4)甲不在排頭,乙不在排尾。

【答案】130240210080314400430960

【解析】

1)先把甲安排到中間6個位置的一個,再對剩下位置全排列;

2)把甲乙兩人捆綁在一起看作一個復合元素,再和另外6人全排列;

3)把甲乙丙3人插入到另外5人排列后所形成的6個空中的三個空,結合公式求解;

4)可采用間接法得到;

1)假設8個人對應8個空位,甲不站兩端,有6個位置可選,則其他7個人對應7個位置,故有:種情況

2)把甲乙兩人捆綁在一起看作一個復合元素,再和另外6人全排列,故有種情況;

3)把甲乙丙3人插入到另外5人排列后所形成的6個空中的三個空,故有種情況;

4)利用間接法,用總的情況數減去甲在排頭、乙在排尾的情況數,再加上甲在排頭同時乙在排尾的情況,故有種情況

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.

現在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x﹣a|+3x,其中a>0.

(1)當a=1時,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為2的正三角形,,EF、H分別為AP、AB、AC的中點,PFBE于點M,CFBH于點N,,

求證:平面BEH;

求證:;

求直線PA與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著計算機的出現,圖標被賦予了新的含義,又有了新的用武之地.在計算機應用領域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內部的白色區(qū)域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的左、右頂點分別為A,B,離心率為,點P1,)為橢圓上一點.

1)求橢圓C的標準方程;

2)如圖,過點C0,1)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)討論函數的單調性;

(Ⅱ)當時,在定義域內恒成立,求實數的值.

查看答案和解析>>

同步練習冊答案