已知數(shù)列{an}滿足遞推式an=2an-1+1(n≥2),其中a3=7
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列(bn}滿足bn=
nan+1
,求數(shù)列{bn}的前n項(xiàng)和Sn
分析:(1)an=2an-1+1兩邊同時(shí)加上1,構(gòu)造出數(shù)列{an+1}是以2為公比的等比數(shù)列,通過(guò)數(shù)列{an+1}的通項(xiàng)公式求出
{an}的通項(xiàng)公式
(2)由(1)求得bn=
n
an+1
=
n
2n
,利用錯(cuò)位相消法求和即可.
解答:解:(1)由已知,a3=2a2+1,得a2=3,同理得a1=1
在an=2an-1+1兩邊同時(shí)加上1,得出an+1=2(an-1+1),所以數(shù)列{an+1}是以2為公比的等比數(shù)列,
 首項(xiàng)為a1+1=2故an+1=2×2n-1=2n
化簡(jiǎn)得數(shù)列{an}的通項(xiàng)公式為an=2n-1.
(2)bn=
n
an+1
=
n
2n

Sn=
1
2
+
2
22
+
3
23
+…+
n-1
2n-1
+
n
2n

1
2
Sn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1

①-②得
1
2
Sn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1

故Sn=2-
n+2
2n
點(diǎn)評(píng):本題考查數(shù)列的遞推公式和通項(xiàng)公式,錯(cuò)位相消法求和計(jì)算,考查轉(zhuǎn)化計(jì)算,構(gòu)造能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案