已知等差數(shù)列前三項為,前項的和為
(1)求 ;
(2)求

(1);(2)

解析試題分析:(1)根據(jù)條件通過建立簡單的方程可求得的值;(2)首先根據(jù)第(1)求出,然后根據(jù)的結構特征通過利用裂項法可求得結果.
試題解析:(1)設該等差數(shù)列為,則,
由已知有,解得, 故
(2)由,得,


考點:1、等差數(shù)列的通項公式.;2、等差數(shù)列的前項和;3、裂項法求和.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知是遞增的等差數(shù)列,,是方程的根。
(I)求的通項公式;
(II)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某種汽車購買時費用為16.9萬元,每年應交付保險費、汽油費費用共1.5萬元,汽車的維修費
用為:第一年0.4萬元,第二年0.6萬元,第三年0.8萬元,依等差數(shù)列逐年遞增.
(1)設該車使用n年的總費用(包括購車費用)為試寫出的表達式;
(2)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•湖北)已知數(shù)列{an}的前n項和為Sn,且滿足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求數(shù)列{an}的通項公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,試判斷:對于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013·天津模擬)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項公式.
(2)求數(shù)列{an·bn}的前n項和Dn
(3)設cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設Sn表示數(shù)列的前n項和.
(1)若為等差數(shù)列,  推導Sn的計算公式;
(2)若, 且對所有正整數(shù)n, 有. 判斷是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的首項,公差,數(shù)列是等比數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)設數(shù)列對任意正整數(shù)n,均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為正項等比數(shù)列,,為等差數(shù)列的前
項和,.
(1)求的通項公式;
(2)設,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}的前n項和為Sn,S7=49,a4和a8的等差中項為2.
(1)求an及Sn;
(2)證明:當n≥2時,有

查看答案和解析>>

同步練習冊答案