某種汽車購買時(shí)費(fèi)用為16.9萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)費(fèi)用共1.5萬元,汽車的維修費(fèi)
用為:第一年0.4萬元,第二年0.6萬元,第三年0.8萬元,依等差數(shù)列逐年遞增.
(1)設(shè)該車使用n年的總費(fèi)用(包括購車費(fèi)用)為試寫出的表達(dá)式;
(2)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

(1) ,(2)13.

解析試題分析:(1) 解實(shí)際問題應(yīng)用題,關(guān)鍵在于根據(jù)題意列出等量關(guān)系. 由等差數(shù)列求和得:(2)由題意得為求年平均費(fèi)用最小值:當(dāng)且僅當(dāng)時(shí),取“=”.
解:(1)               (4分)

              (7分)
(2) ,         (11分)
當(dāng)且僅當(dāng)時(shí),取“=”.               (13分)
所以,這種汽車使用13年報(bào)廢最合算.                   (15分)
考點(diǎn):數(shù)列應(yīng)用題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知首項(xiàng)都是1的兩個(gè)數(shù)列),滿足.
(1)令,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•湖北)成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,向量.
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),若對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,設(shè)數(shù)列滿足 
(1)求數(shù)列的前項(xiàng)和為;
(2)若數(shù)列,若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列前三項(xiàng)為,前項(xiàng)的和為
(1)求 ;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{ }、{ }滿足:.
(1)求          
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時(shí) 恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案