【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,bc,其中A為銳角,且asinB+C)是bcosCccosB的等差中項(xiàng).

1)求角A的大小;

2)若點(diǎn)D在△ABC的內(nèi)部,且滿足∠CAD=∠ABD,∠CBD,AD1,求CD的長(zhǎng).

【答案】1A.(2

【解析】

1)由已知得出條件等式,由正弦定理、兩角和正弦公式化簡(jiǎn),即可求出;

2)根據(jù)已知條件在中,用余弦定理求出,在中,用正弦定理求出,在中,用余弦定理,求出.

1)∵asinB+C)是bcosCccosB的等差中項(xiàng).

2asinB+CbcosCccosB,

∴可得:2sin2AsinBcosC+sinCcosBsinB+CsinA,

A為銳角,sinA≠0,

sinA,可得A

2)∵滿足∠CAD=∠ABD,∠CBD,AAD1,

∴∠BAD=∠ABD,可得ADBD1,∠ADB

∴在△ABD中,由余弦定理可得

AB

,

∴∠ABC=∠ABD+DBC,

可得∠ACBπ﹣∠BAC﹣∠ABC,

∴△ABC中,由正弦定理,

可得,可得BC,

∴△BDC中,由余弦定理可得:

CD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線上,點(diǎn)是拋物線的焦點(diǎn),線段的中點(diǎn)為.

(1)若點(diǎn)的坐標(biāo)為,且的垂心,求直線的方程;

(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“綠水青山就是金山銀山”,“建設(shè)美麗中國(guó)”已成為新時(shí)代中國(guó)特色社會(huì)主義生態(tài)文明建設(shè)的重要內(nèi)容,某班在一次研學(xué)旅行活動(dòng)中,為了解某苗圃基地的柏樹幼苗生長(zhǎng)情況,在這些樹苗中隨機(jī)抽取了120株測(cè)量高度(單位:),經(jīng)統(tǒng)計(jì),樹苗的高度均在區(qū)間內(nèi),將其按,,,分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥涿缟L(zhǎng)規(guī)律,高度不低于的為優(yōu)質(zhì)樹苗.

(1)求圖中的值;

(2)已知所抽取的這120株樹苗來(lái)自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹苗

20

非優(yōu)質(zhì)樹苗

60

合計(jì)

將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;

(3)通過用分層抽樣方法從試驗(yàn)區(qū)被選中的樹苗中抽取5株,若從這5株樹苗中隨機(jī)抽取2株,求優(yōu)質(zhì)樹苗和非優(yōu)質(zhì)樹苗各有1株的概率.

附:參考公式與參考數(shù)據(jù):

其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種密碼,明文是由三個(gè)字符組成,密碼是由明文對(duì)應(yīng)的五個(gè)數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個(gè)字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對(duì)應(yīng)的密碼由明文對(duì)應(yīng)的數(shù)字按相同的次序排成一排組成.


第一排

明文字符

A

B

C

D

密碼字符

11

12

13

14


第二排

明文字符

E

F

G

H

密碼字符

21

22

23

24


第三排

明文字符

M

N

P

Q

密碼字符

1

2

3

4

設(shè)隨機(jī)變量表示密碼中不同數(shù)字的個(gè)數(shù).

(Ⅰ); (Ⅱ)求隨機(jī)變量的分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中為了了解高三學(xué)生每天自主參加體育鍛煉的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,其中女生有55.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生自主參加體育鍛煉時(shí)間的頻率分布直方圖:

將每天自主參加體育鍛煉時(shí)間不低于40分鐘的學(xué)生稱為體育健康A類學(xué)生,已知體育健康A類學(xué)生中有10名女生.

(Ⅰ)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否認(rèn)為達(dá)到體育健康A類學(xué)生與性別有關(guān)?

非體育健康A類學(xué)生

體育健康A類學(xué)生

合計(jì)

男生

女生

合計(jì)

(Ⅱ)將每天自主參加體育鍛煉時(shí)間不低于50分鐘的學(xué)生稱為體育健康類學(xué)生,已知體育健康類學(xué)生中有2名女生,若從體育健康類學(xué)生中任意選取2人,求至少有1名女生的概率.

附:

P

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),曲線C2的參數(shù)方程為β為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C1C2的極坐標(biāo)方程;

2)若點(diǎn)A在曲線C1上,點(diǎn)B在曲線C2上,且∠AOB,求|OA||OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,平面,.

1)證明:平面;

2)若與平面所成角為45°,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為美化校園,江蘇省淮陰中學(xué)將一個(gè)半圓形的邊角地改造為花園.如圖所示,O為圓心,半徑為1千米,點(diǎn)A、B、P都在半圓弧上,設(shè)∠NOP=POA=,∠AOB=,且.

1)請(qǐng)用分別表示線段NA、BM的長(zhǎng)度;

2)若在花園內(nèi)鋪設(shè)一條參觀線路,由線段NA、ABBM三部分組成,則當(dāng)取何值時(shí),參觀線路最長(zhǎng)?

3)若在花園內(nèi)的扇形ONP和四邊形OMBA內(nèi)種滿杜鵑花,則當(dāng)取何值時(shí),杜鵑花的種植總面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,為邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使平面平面.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案