【題目】已知函數(shù)).

(1)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;

(2)若函數(shù)不存在零點,求實數(shù)的取值范圍.

【答案】(1).

(2).

【解析】試題分析】(1)求得函數(shù)定義域和函數(shù)導數(shù),代入函數(shù)的導數(shù),利用導數(shù)值為解方程求得的值.再根據(jù)函數(shù)的單調性求出函數(shù)在區(qū)間上的最大值.(2)對函數(shù)求導后,分成, 兩類討論函數(shù)的單調區(qū)間,利用不存在零點來求得的取值范圍.

試題解析

解:(1)函數(shù)的定義域為, ,

,∴

, 單調遞減,在, 單調遞增,

所以取極小值.所以上單調遞增,在上單調遞減;

, , .

時, 的最大值為

(2)由于

①當時, , 是增函數(shù),

且當時,

時, ,

,取,則,

所以函數(shù)存在零點

時, , .在, 單調遞減,

, 單調遞增,

所以取最小值. 解得

綜上所述:所求的實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理中是演繹推理的為( )

A. 由金、銀、銅、鐵可導電,猜想:金屬都可導電

B. 猜想數(shù)列的通項公式為

C. 半徑為的圓的面積,則單位圓的面積

D. 由平面直角坐標系中圓的方程為,推測空間直角坐標系中球的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.

(1)求橢圓的方程;

(2)若以為直徑的圓過坐標原點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))的圖象在它們與坐標軸交點處的切線互相平行.

(1)若關于的不等式有解,求實數(shù)的取值范圍;

(2)對于函數(shù)公共定義域內的任意實數(shù),我們把的值稱為兩函數(shù)在處的瞬間距離”.則函數(shù)的所有瞬間距離是否都大于2?請加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三條直線兩兩平行且不共面,每兩條直線確定一個平面,一共可以確定幾個平面?如果三條直線相交于一點,它們最多可以確定幾個平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調性;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調性;

(2)若時,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案