【題目】已知橢圓過點(diǎn),其左、右兩個(gè)焦點(diǎn)分別為,,短軸的一個(gè)端點(diǎn)為,且.

1)求的平分線所在的直線方程;

2)設(shè)直線與橢圓交于不同的兩點(diǎn),.為坐標(biāo)原點(diǎn),若,求的面積的最大值.

【答案】12

【解析】

1)根據(jù)橢圓過點(diǎn),且得到,從而解得橢圓的方程,設(shè)角平分線與軸交于,易得,,利用角平分線定理,可得.由點(diǎn)寫出的方程.

2)設(shè).,與橢圓方程聯(lián)立,根據(jù)判別式大于零和求得k的范圍,再由求解.

1)由題意得,解得,

所以橢圓的方程為.

設(shè)角平分線與軸交于,

因?yàn)?/span>,,

所以,,

所以,

所以,解得.

因?yàn)橹本的斜率,

所以直線的方程為,即.

2)設(shè),.,消去y得:

,

,,

.

,得,所以.

.

,

,

所以.

綜合①②可知.

,則,

所以,

因?yàn)?/span>上單調(diào)遞增.

所以上單調(diào)遞減,

當(dāng),即時(shí),的面積最大,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn)且離心率為

1)求橢圓的方程;

2)如圖所示,設(shè)橢圓的右頂點(diǎn)為,,是橢圓上異于點(diǎn)的兩點(diǎn),直線,的斜率分別為,若,試判斷直線是否經(jīng)過一個(gè)定點(diǎn)?若是,則求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是等腰梯形,且,,四邊形是矩形,,點(diǎn)上的一動(dòng)點(diǎn).

1)求證:;

2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值;

2)是否存在實(shí)數(shù),使得不等式上恒成立?若存在,求出的最小值:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學(xué)家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計(jì)算,將被乘數(shù)89計(jì)入上行,乘數(shù)65計(jì)入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進(jìn)一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個(gè)方程為“互為鏡像方程對(duì)”,給出下列四對(duì)方程:

互為鏡像方程對(duì)的是(

A.①②③B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,右頂點(diǎn)為.為坐標(biāo)原點(diǎn))的三個(gè)內(nèi)角大小成等差數(shù)列.

1)求橢圓的離心率

2)直線與橢圓交于兩點(diǎn),設(shè)直線,若面積的最大值為,且該橢圓短軸長(zhǎng)小于焦距,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)軸負(fù)半軸上,以為邊做菱形,且菱形對(duì)角線的交點(diǎn)在軸上,設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)過點(diǎn),其中,作曲線的切線,設(shè)切點(diǎn)為,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案