【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1. (Ⅰ)當(dāng)k=﹣2時(shí),求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)﹣g(x)是奇函數(shù)(不為常函數(shù)),求實(shí)數(shù)k的值.
【答案】解:(Ⅰ)當(dāng)k=﹣2時(shí),求函數(shù)h(x)=f(x)+g(x)=loga(1+x)+loga(1﹣2x)=loga(1+x)(1﹣2x), 由 ,
解得﹣1<x< ,
故函數(shù)h(x)的定義域?yàn)椋ī?, ).
(Ⅱ)由于函數(shù)H(x)=f(x)﹣g(x)= 是奇函數(shù),
故有f(﹣x)=﹣f(x),
即 =﹣ ,
∴ + = =0,
∴k=±1.
【解析】(Ⅰ)當(dāng)k=﹣2時(shí),由函數(shù)h(x)的定義,可得 ,解得x的范圍,可得函數(shù)h(x)的定義域.(Ⅱ)由于函數(shù)H(x)= 是奇函數(shù),可得f(﹣x)=﹣f(x),即 =﹣ ,即 =0,由此求得k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線: (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)過點(diǎn)且與直線平行的直線交于, 兩點(diǎn),求點(diǎn)到, 兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,向量m=(2b,1),n=(2a-c,cos C),且m∥n.(1)若b2=ac,試判斷△ABC的形狀;(2)求y=1-的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為, , ,數(shù)列滿足: , , ,數(shù)列的前n項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=lg(3﹣4x+x2)的定義域?yàn)镸,當(dāng)x∈M時(shí),則f(x)=2x+2﹣3×4x的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確命題的個(gè)數(shù)是( )
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若| |=| |,則 = .
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為偶函數(shù)
(1)求實(shí)數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[ , ](m>0,n>0)時(shí),若函數(shù)f(x)的值域[2﹣3m,2﹣3n],求實(shí)數(shù)m,n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求證:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com