(2012•懷化二模)已知集合M={x∈R|(x-1)(x-2)>0}和N={x∈R|x2+x<0}則P:x∈M是q:x∈N的( 。
分析:求出集合M,集合N,然后利用充要條件的判斷方法,判斷即可.
解答:解:集合M={x∈R|(x-1)(x-2)>0}={x|x<1或x>2},
N={x∈R|x2+x<0}={x|-1<x<0},
q:x∈N⇒P:x∈M,但是P:x∈M推不出q:x∈N,
所以P:x∈M是q:x∈N的必要不充分條件.
故選B.
點(diǎn)評(píng):本題考查集合的求法,充要條件的判定,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知向量
a
b
的夾角為120°,且|
a
|=2,|
b
|=5,則(2
a
-
b
)•
a
=
13
13

?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知實(shí)數(shù)x,y滿足
|x|
5
+
|y|
3
≤1
,則z=2x+y的最小值是
-10
-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知函數(shù)f(x)是R上的偶函數(shù),且f(4-x)=f(x),當(dāng)x∈[0,2]時(shí),f(x)=x2+2x,則f(2011)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)已知函數(shù)?(x)=
a
x
,a為常數(shù),且a>0
(1)若f(x)=ln(x-1)+?(x),且a=6,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=|ln(x-1)|+?(x),且對(duì)任意x1,x2∈(1,3],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<0
,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案