【題目】如圖,矩形,下列結(jié)論中不正確的是( )
A. B. C. D.
【答案】A
【解析】分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,則BD⊥平面PAD,又BA⊥平面PAD,則過平面外一面有兩條直線與平面垂直,不成立,故PD⊥BD不正確.
詳解:∵PA⊥矩形ABCD,
∴PA⊥BD,若PD⊥BD,則BD⊥平面PAD,
又BA⊥平面PAD,則過平面外一面有兩條直線與平面垂直,不成立,
故PD⊥BD不正確,故A不正確;
∵PA⊥矩形ABCD,
∴PA⊥CD,AD⊥CD,
∴CD⊥平面PAD,∴PD⊥CD,故B正確;
∵PA⊥矩形ABCD,
∴由三垂線定理得PB⊥BC,故C正確;
∵PA⊥矩形ABCD,
∴由直線與平面垂直的性質(zhì)得PA⊥BD,故D正確.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 , 為兩個定點(diǎn), 是 的一條切線,若過 兩點(diǎn)的拋物線以直線 為準(zhǔn)線,則該拋物線的焦點(diǎn)的軌跡方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,離心率為 ,左、右焦點(diǎn)分別為 .
(1)求橢圓的方程;
(2)若直線 與橢圓交于A,B兩點(diǎn),與以 為直徑的圓交于C,D兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù) 在 處有極值 ,求 的值;
(2)若對于任意的 在 上單調(diào)遞增,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列滿足,,且..
(1)求數(shù)列與的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)的;
(3)將數(shù)列與的項(xiàng)相間排列構(gòu)成新數(shù)列,設(shè)新數(shù)列的前項(xiàng)和為,若對任意正整數(shù)n都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 ,圓心為 ,定點(diǎn) , 為圓 上一點(diǎn),線段 上一點(diǎn) 滿足 ,直線 上一點(diǎn) ,滿足 .
(Ⅰ)求點(diǎn) 的軌跡 的方程;
(Ⅱ) 為坐標(biāo)原點(diǎn), 是以 為直徑的圓,直線 與 相切,并與軌跡 交于不同的兩點(diǎn) .當(dāng) 且滿足 時,求 面積 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)和兩種產(chǎn)品,按計劃每天生產(chǎn)各不得少于10噸,已知生產(chǎn)產(chǎn)品噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產(chǎn)產(chǎn)品1噸需要用煤4噸,電5度,勞動力10個,如果產(chǎn)品每噸價值7萬元, 產(chǎn)品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應(yīng)安排生產(chǎn)兩種產(chǎn)品各多少才是合理的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: ,直線過定點(diǎn).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于、兩點(diǎn),求的面積的最大值,并求此時直線的方程.(其中點(diǎn)是圓的圓心)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com