【題目】(1+ )(1+x)6展開式中x2的系數(shù)為( 。
A.15
B.20
C.30
D.35
【答案】C
【解析】解:(1+ )(1+x)6展開式中:
若(1+ )=(1+x﹣2)提供常數(shù)項(xiàng)1,則(1+x)6提供含有x2的項(xiàng),可得展開式中x2的系數(shù):
若(1+ )提供x﹣2項(xiàng),則(1+x)6提供含有x4的項(xiàng),可得展開式中x2的系數(shù):
由(1+x)6通項(xiàng)公式可得 .
可知r=2時(shí),可得展開式中x2的系數(shù)為 .
可知r=4時(shí),可得展開式中x2的系數(shù)為 .
(1+ )(1+x)6展開式中x2的系數(shù)為:15+15=30.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分類加法計(jì)數(shù)原理的相關(guān)知識(shí),掌握做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那么完成這件事情共有M1+M2+……+MN種不同的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,|an+1-an|=pn,n∈N*,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,令cn=n(an+1-an),求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的面積為3,且滿足0≤≤6,設(shè)與的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=2sin2- (cos θ+sin θ)·(cos θ-sin θ)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的中心在原點(diǎn)焦點(diǎn)在 軸上,離心率等于 ,它的一個(gè)頂點(diǎn)恰好是拋物線 的焦點(diǎn).
(1)求橢圓 的焦點(diǎn);
(2)已知點(diǎn) 在橢圓 上,點(diǎn) 是橢圓 上不同于 的兩個(gè)動(dòng)點(diǎn),且滿足: ,試問(wèn):直線 的斜率是否為定值?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 是數(shù)列 的前 項(xiàng)和,并且 ,對(duì)任意正整數(shù) , ,設(shè) ( ).
(1)證明:數(shù)列 是等比數(shù)列,并求 的通項(xiàng)公式;
(2)設(shè) ,求證:數(shù)列 不可能為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且在上是增函數(shù);
定義行列式; 函數(shù) (其中).
(1) 證明: 函數(shù)在上也是增函數(shù);
(2) 若函數(shù)的最大值為4,求的值;
(3) 若記集合M={m|恒有g()<0},,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn) , 為圓 上任意一點(diǎn),線段 上一點(diǎn) 滿足 ,直線 上一點(diǎn) ,滿足 .
(1)當(dāng) 在圓周上運(yùn)動(dòng)時(shí),求點(diǎn) 的軌跡 的方程;
(2)若直線 與曲線 交于 兩點(diǎn),且以 為直徑的圓過(guò)原點(diǎn) ,求證:直線 與 不可能相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項(xiàng),記 .
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若m=17,求cn取得最小值時(shí)n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項(xiàng)時(shí), 有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列的最小項(xiàng)時(shí),有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com