【題目】如圖所示,將平面直角坐標(biāo)系的格點(橫、縱坐標(biāo)均為整數(shù)的點)按如下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,點處標(biāo)數(shù)字,以此類推:記格點坐標(biāo)為的點(均為正整數(shù))處所標(biāo)的數(shù)字為,若,則

【答案】

【解析】

試題從橫軸上的點開始點開始計數(shù),從開始計數(shù)第一周共個格點,除了四個頂點外每一行第一列各有一個格點,外加一個延伸點,第二周從開始計,除了四個頂點的四個格點外,每一行每一列有三個格點,外加一個延伸點共個,拐彎向下到達(dá)橫軸前的格點補開始點的上面以補足起始點所在列的個數(shù),設(shè)周數(shù)為,由此其規(guī)律是后一周是前一周的格點數(shù)加上,各周的點數(shù)和為,每一行(或列)除了端點外的點數(shù)與周數(shù)的關(guān)系是,由于,,當(dāng)時,.故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-1nN*),數(shù)列{bn}滿足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}{bn}的通項公式;

2)若cn=-1n-1,求數(shù)列{cn}的前n項和T2n;

3)若dn=an,數(shù)列{dn}的前n項和為Dn,對任意的nN*,都有DnnSn-a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為了解其后勤部門的服務(wù)情況,隨機訪問了40名其他部門的員工,根據(jù)這40名員工對后勤部門的評分情況,繪制了頻率分布直方圖如圖所示,其中樣本數(shù)據(jù)分組區(qū)間為,,,,.

1)求的值;

2)估計該單位其他部門的員工對后勤部門的評分的中位數(shù);

3)以評分在的受訪者中,隨機抽取2人,求此2人中至少有1人對后勤部門評分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.

(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式:

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(α)=.

(1)化簡f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:

資金投入x

2

3

4

5

6

利潤y

2

3

5

6

9

(1)畫出數(shù)據(jù)對應(yīng)的散點圖;

(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;

(3)現(xiàn)投入資金10萬元,求獲得利潤的估計值為多少萬元?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》 是我國古代的天文學(xué)和數(shù)學(xué)著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,

從以下兩個命題中任選一個進行證明:

當(dāng)時函數(shù)恰有一個零點;

當(dāng)時函數(shù)恰有一個零點;

如圖所示當(dāng),的圖象“好像”只有一個交點,但實際上這兩個函數(shù)有兩個交點,請證明:當(dāng)時,兩個交點.

若方程恰有4個實數(shù)根,請結(jié)合的研究,指出實數(shù)k的取值范圍不用證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有一點列、、、、,對每個正整數(shù),點位于函數(shù)的圖像上,且點、點與點構(gòu)成一個以為頂角頂點的等腰三角形;

1)求點的縱坐標(biāo)的表達(dá)式;

2)若對每個自然數(shù),以、、為邊長能構(gòu)成一個三角形,求的取值范圍;

3)設(shè),若取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列的最大項的項數(shù)是多少?試說明理由;

查看答案和解析>>

同步練習(xí)冊答案