下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z};
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④若cos2α=
1
2
,則α=2kπ±
π
6
(k∈Z);
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
(寫出所有真命題的編號)
分析:①先進行化簡,再利用求周期的公式即可判斷出是否正確;
②對k分奇數(shù)、偶數(shù)討論即可;
③令h(x)=x-sinx,利用導數(shù)研究其單調(diào)性即可;
④利用終邊相同的角的集合解出即可;
⑤利用誘導公式先進行化簡,進而可判斷出是否正確.
解答:解:①函數(shù)y=sin4x-cos4x=(sin2x+cos2x)(sin2x-cos2x)=-cos2x,∴最小正周期T=
2
,∴函數(shù)y=sin4x-cos4x的最小正周期是π,故①正確;
②當k=2n(n為偶數(shù))時,a=
2nπ
2
=nπ,表示的是終邊在x軸上的角,故②不正確;
③令h(x)=x-sinx,則h(x)=1-cosx≥0,∴函數(shù)h(x)在實數(shù)集R上單調(diào)遞增,故函數(shù)y=sinx與y=x最多只能一個交點,因此③不正確;
④∵cos2α=
1
2
,∴2α=2kπ±
π
3
,∴α=kπ±
π
6
(k∈Z),故④不正確;
⑤∵函數(shù)y=sin(x-
π
2
)=-cosx,又函數(shù)y=cosx在區(qū)間(0,π)上單調(diào)遞減,∴函數(shù)y=sin(x-
π
2
)=-cosx在區(qū)間(0,π)是單調(diào)遞增,故⑤不正確.
綜上可知:只有①正確.
故答案為①.
點評:本題綜合考查了三角函數(shù)的周期性、單調(diào)性、三角函數(shù)取值及終邊相同的角,利用誘導公式進行化簡和利用導數(shù)判斷單調(diào)性是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點.
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
 
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z
|.
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點.
④把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)
在(0,π)上是減函數(shù)
其中真命題的序號是
 
((寫出所有真命題的編號))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在直線y=±x上的角的集合是{α|α=
2
+
π
4
,k∈Z}

③函數(shù)y=sin(x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
④函數(shù)y=sin(x-
π
2
)在[0,π]
上是減函數(shù).
⑤連續(xù)函數(shù)f(x)定義在[2,4]上,若有f(2)•f(4)>0,要用二分法求f(x)的一個零點,精確度為0.1,則最多將進行5次二等分區(qū)間.
其中,真命題的編號是
①②⑤
①②⑤
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是2π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈z};
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有一個公共點;
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
⑤在△ABC中,若acosB=bcosA,則△ABC是等腰三角形;
其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是 {a|a=
2
,k∈Z}
;
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
個單位得到y(tǒng)=3sin2x的圖象;
⑤函數(shù)y=sin(x-
π
2
)
在〔0,π〕上是減函數(shù);
其中真命題的序號是( 。

查看答案和解析>>

同步練習冊答案