一個多面體的直觀圖和三視圖如圖所示,其中,分別是,的中點.
(1)求證:平面
(2)在線段上(含端點)確定一點,使得∥平面,并給出證明.

(1)分別證明,,根據線面平行的判定定理即可證明
(2)點點處

解析試題分析:由三視圖可得直觀圖為直三棱柱且底面,.

(1)∵⊥平面?平面,
.
在矩形中,,中點,,
.
?平面?平面,
平面.                                                                 …6分
(2)點點處.
證明:取中點,連接,
的中點,∴.    又,,
∴平面∥平面.而 ?平面
∥平面.                                                                  …14分
考點:本小題主要考查線面垂直和線面平行的證明.
點評:證明直線、平面間的位置關系,要緊扣相應的判定定理和性質定理,定理中要求的條件缺一不可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形都是邊長為的正方形,點E是的中點,

求證:
求證:平面;
求體積的比值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖甲,設正方形的邊長為,點分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點
平面上的射影恰好在上.

(1)證明:平面
(2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知為平行四邊形,,,點上,,,相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.

(Ⅰ) 求證:平面
(Ⅱ) 求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當的長為何值時,平面與平面所成的銳二面角的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,三棱柱中,
,的中點,且

(1)求證:∥平面
(2)求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是以為直徑的半圓上異于、的點,矩形所在的平面垂直于該半圓所在的平面,且

(Ⅰ)求證:
(Ⅱ)設平面與半圓弧的另一個交點為
①試證:;
②若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在棱長為的正方體中,分別為的中點.

(1)求直線與平面所 成 角的大;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面;
(2)當的中點時,求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案