如圖,四棱錐的底面是正方形,⊥底面,點(diǎn)在棱上.

(1)求證:平面⊥平面;
(2)當(dāng)的中點(diǎn)時(shí),求與平面所成角的正弦值.

(Ⅰ)利用線面垂直證明面面垂直;(Ⅱ)

解析試題分析:(Ⅰ)∵四邊形ABCD是正方形,∴ACBD
PD⊥底面ABCD,∴PDAC,∴AC⊥平面PDB,
,∴平面AEC⊥平面PDB.              (6分)
(Ⅱ)方法一:如圖1,設(shè)ACBD=O,連接OE

由(Ⅰ)知AC⊥平面PDBO,∴∠AEOAE與平面PDB所成的角,   
∵O,E分別為DB、PB的中點(diǎn),∴OE∥PD,且OE=PD,
又∵PD⊥底面ABCD, ∴OE⊥底面ABCD,OE⊥AO,      
在Rt△AOE中,由PD=AB,
設(shè),則,,∴,于是,
即AE與平面PDB所成角的正弦值為.               (12分)
方法二:如圖2,以D為原點(diǎn)建立空間直角坐標(biāo)系D?xyz,

設(shè),AE與平面PDB所成的角為,
,,,
于是,所以
且平面的法向量,所以
AE與平面PDB所成角的正弦值為.               (12分)
考點(diǎn):本題考查了空間中的線面關(guān)系及空間角的求法
點(diǎn)評(píng):直線和平面成角的重點(diǎn)是研究斜線和平面成角,常規(guī)求解是采用“作、證、算”,但角不易作出時(shí),可利用構(gòu)成三條線段的本質(zhì)特征求解,即分別求斜線段、射影線段、點(diǎn)A到平面的距離求之.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)多面體的直觀圖和三視圖如圖所示,其中,分別是的中點(diǎn).
(1)求證:平面;
(2)在線段上(含端點(diǎn))確定一點(diǎn),使得∥平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫(xiě)出點(diǎn)P、B、D的坐標(biāo);
(2)問(wèn)當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體中,點(diǎn)在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=900,過(guò)點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE
折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為,在直線DE上是否存在一點(diǎn),使得∥面BCD?若存在,請(qǐng)指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB, PC的中點(diǎn)

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;    
(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求證:BFAD;
(Ⅱ)求直線BD與平面BCF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABCD中,,,且E、F分別為線段CD、AB上的點(diǎn),且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在邊長(zhǎng)為2的正方體中,EBC的中點(diǎn),F的中點(diǎn)

(1)求證:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案