如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求證:BFAD;
(Ⅱ)求直線BD與平面BCF所成角的大。

(Ⅰ)先證平面EGH從而得到BFAD (Ⅱ)

解析試題分析:(Ⅰ)設AB的中點為H,連接EH,因為AB=2EF,且EF∥AB,所以四邊形EHBF是平行四邊形,取AD的中點G,正△EAD,則,連接GH,在△AGH中,AH=2AG=2,.故,即,所以平面EGH,所以,又因為BF∥EH,所以BFAD
(Ⅱ)由(Ⅰ)BFAD,在平行四邊形ABCD中,BC∥AD,所以BC⊥BF;又GH⊥AD, BD∥GH ,所以BD ⊥AD,而BC∥AD,故BC⊥BD,所以BC⊥平面DFB,BC平面BCF,所以平面BCF⊥平面DFB,所以點D在平面BCF上的射影P點在BF上,所以∠FBD就是直線BD與平面BCF所成的角,在△BFD中, BF=HE=,又BC⊥平面DFB,所以,平面FBD⊥面ABCD,故F點在平面ABCD上的射影K在BD上,且FK=EG=,所以,故求直線BD與平面BCF所成角是
考點:直線與平面所成的角;空間中直線與直線之間的位置關系.
點評:本題主要考查直線與平面垂直、直線與平面所成的角等基礎知識,考查空間想象能力、運算能力、推理論證能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是以為直徑的半圓上異于的點,矩形所在的平面垂直于該半圓所在的平面,且

(Ⅰ)求證:
(Ⅱ)設平面與半圓弧的另一個交點為
①試證:;
②若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點.

求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面;
(2)當的中點時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體ABCD—A1B1C1D1中,E為AB中點,F(xiàn)為正方形BCC1B1的中心.

(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐中,,,,分別是的中點.

(Ⅰ)求證
(Ⅱ)求證;
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面,,的中點.

(Ⅰ)證明
(Ⅱ)證明平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
在如圖的多面體中,⊥平面,,,,,,   的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:;

查看答案和解析>>

同步練習冊答案