【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度克/升隨著時(shí)間分鐘變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4克/升時(shí),它才能起有效去污的作用.

1若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?

2若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值精確到0.1,參考數(shù)據(jù):.

【答案】12.

【解析】

試題分析:1當(dāng)時(shí),代入,依題意有效去污滿足,即,解得,故有效去污時(shí)間可能達(dá)分鐘;2由于某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,故設(shè)項(xiàng)對應(yīng)的濃度為,此時(shí),,,將濃度相加,得,分離參數(shù)得,利用換元法和基本不等式求得,故的最小值為.

試題解析:

1由題意知有效去污滿足,則

,所以有效去污時(shí)間可能達(dá)8分鐘.

2,,

,若令,

,

所以的最小值為1.6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,bc是兩兩不等的實(shí)數(shù),則pa2b2c2qabbcca的大小關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCD所在平面外一點(diǎn),MN分別為ABPC的中點(diǎn),平面PAD∩平面PBC=l.

(1)判斷BC與l的位置關(guān)系,并證明你的結(jié)論;

(2)判斷MN與平面PAD的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(-2,0),N(2,0),動(dòng)點(diǎn)P滿足條件|PM|-|PN|=2,記動(dòng)點(diǎn)P的軌跡為W

求W的方程;

若A、B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,為自然對數(shù)的底數(shù),且曲線在坐標(biāo)原點(diǎn)處的切線相同.

1的最小值;

2時(shí),恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C,D的動(dòng)點(diǎn),將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列說法中正確的有(

①存在點(diǎn)E使得直線SA平面SBC;

②平面SBC內(nèi)存在直線與SA平行

③平面ABCE內(nèi)存在直線與平面SAE平行;

④存在點(diǎn)E使得SEBA.

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱中,,是棱上的一點(diǎn),分別為的中點(diǎn).

1求證:平面;

2當(dāng)的中點(diǎn)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對四面體性質(zhì)的猜想,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.

1求曲線的普通方程,并將的方程化為極坐標(biāo)方程;

2直線的極坐標(biāo)方程為,其中滿足,若曲線的公共點(diǎn)都在上,求.

查看答案和解析>>

同步練習(xí)冊答案