【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大。

【答案】(1)見解析; (2)見解析.

【解析】

(1)通過證明AB⊥BD和AA1⊥BD即可得證;

(2)根據(jù)條件分別求,然后比較大小即可.

(1)證明:∵AB2+BD2=AD2=2,

∴AB⊥BD.

又AA1⊥平面ABCD,∴AA1⊥BD.

∵AB∩AA1=A,∴BD⊥平面ABB1A1

(2)∵AB=BD且AB⊥BD,∴∠ADB=45°.

又AD∥BC,∴∠CBD=∠ADB=45°,∴

∴四邊形ABCD的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為.

1)求橢圓的方程;

2)過點(diǎn)作兩條互相垂直的弦分別與橢圓交于點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(ab)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

(1)ab間的關(guān)系;

(2)|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競(jìng)賽選拔賽.已知成績(jī)合格的名參賽選手成績(jī)的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.

1)求的值;

2)估計(jì)這名參賽選手的平均成績(jī);

3)根據(jù)已有的經(jīng)驗(yàn),參加競(jìng)賽選拔賽的選手能夠進(jìn)入正式競(jìng)賽比賽的概率為,假設(shè)每名選手能否通過競(jìng)賽選拔賽相互獨(dú)立,現(xiàn)有名選手進(jìn)入競(jìng)賽選拔賽,記這名選手在競(jìng)賽選拔賽中通過的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),合肥一中組織體育社團(tuán),某班級(jí)有4人積極報(bào)名參加籃球和足球社團(tuán),每人只能從兩個(gè)社團(tuán)中選擇其中一個(gè)社團(tuán),大家約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己參加哪個(gè)社團(tuán),擲出點(diǎn)數(shù)為56的人參加籃球社團(tuán),擲出點(diǎn)數(shù)小于5的人參加足球社團(tuán).

1)求這4人中恰有1人參加籃球社團(tuán)的概率;

2)用,分別表示這4人中參加籃球社團(tuán)和足球社團(tuán)的人數(shù),記隨機(jī)變量X之差的絕對(duì)值,求隨機(jī)變量X的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點(diǎn),且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法:

①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;

②設(shè)有一個(gè)回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位

③線性回歸方程必過

④設(shè)具有相關(guān)關(guān)系的兩個(gè)變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;

⑤在一個(gè)列聯(lián)表中,由計(jì)算得的值,那么的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大。

其中錯(cuò)誤的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù),點(diǎn)分別是的圖象與軸、軸的交點(diǎn),、分別是的圖象上橫坐標(biāo)為、的兩點(diǎn),軸,且、三點(diǎn)共線.

1)求函數(shù)的解析式;

2)若,,求

3)若關(guān)于的函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案